Diffusion Tensor MRI: What can it tell us about white matter in alcoholism?



**Derek K. Jones** 

STBB, LIMB, NICHD, National Institutes of Health, USA.



Post-Mortem Findings in Alcoholism (e.g. Harper and Krill, 1989)

- Volume reduction
- Demyelination
- Loss of myelinated fibers
- Axonal deletion



#### Nieuwenhuys et al., 1988 The Human Central Nervous System



Crosby et al., 1962 Correlative Anatomy of the Nervous System



Dejerine, 1895 Anatomie des Centres Nerveux





#### Nieuwenhuys et al., 1988 The Human Central Nervous System



Crosby et al., 1962 Correlative Anatomy of the Nervous System



Dejerine, 1895 Anatomie des Centres Nerveux

### **ROBERT BROWN**



### **1773 - 1858**

# Diffusion



### **Diffusion in Biological Systems**

Pulsed NMR study of water mobility in muscle and brain tissue. Hansen JR. Biochim Biophys Acta 230:482-6 (1971)

Nuclear magnetic resonance measurement of skeletal muscle: anisotropy of the diffusion coefficient of the intracellular water. Cleveland GG *et al.* **16:** 1043-53 (1976)

> Self diffusion of water in frog muscle. Tanner JE *Biophys J* 28: 107-16 (1979)

Diffusion weighted MR imaging of anisotropic water diffusion in cat central nervous system. Moseley ME et al. Radiology **176:** 439-45 (1990)

### **DIFFUSION WEIGHTED IMAGES**







### DWI

### ADC

# **DIFFUSION TENSOR**







#### Measured Diffusion Ellipsoids in Human Brain



Pierpaoli C, Jezzard P, Basser PJ, Barnett A, Di Chiro G. Diffusion tensor MR imaging of the human brain. Radiology 1996; 201:637-48.

#### Isotropic Tensor











#### **ANISOTROPY**









# High Anisotropy, High Coherence



### High Anisotropy, Low Coherence



# High Anisotropy, High Coherence



### High Anisotropy, Low Coherence



### **Applications**

- Ageing
- Alcoholism
- Alzheimer's Disease
- ALS
- Development
- Dysexlia
- Epilepsy
- HIV
- Leukoaraiosis
- Multiple Sclerosis
- Schizophrenia
- Tumours
- Wallerian Degeneration

### White Matter Anisotropy with Age



Sullivan & Pfefferbaum *EJR* 2003

### **Fractional Anisotropy**

#### Grand averages aligned at inferior genu





#### 14 Alcoholics

Pfefferbaum et al. ACER 2000

#### DTI in Alcoholic Men



Pfefferbaum et al. ACER 2000

#### DTI in Alcoholic Women



Pfefferbaum & Sullivan NeuroImage 2002

#### FA in Alcoholic Men and Women



Pfefferbaum & Sullivan NeuroImage 2002

# Selective DTI Coherence and Performance Relationships

**Genu Intervoxel Coherence** 

**Splenium Intravoxel FA** 





### **Diffusion Tensor Ellipsoid**

#### Principal Eigen Vector



#### Principal Eigen Vector






















### WHITE MATTER FASCICULI

#### Association Commissural Projection



### **ASSOCIATION FASCICULI**



- Superior and inferior longitudinal fasciculi
- Superior and inferior fronto-occipital fasciculi
- Uncinate fasciculus
- Cingulum



Longitudinal Fasciculus







### Virtual In Vivo Interactive Dissection



### Virtual In Vivo Interactive Dissection of White Matter Fasciculi in the Human Brain

Marco Catani, Robert J Howard, Sinisa Pajevic, Derek K Jones NeuroImage 17: 77-94 (2002)





**Occipital Fasciculus** 

**FIBRES** 









### **COMMISSURAL FASCICULI**



- Corpus callosum
- Anterior commissure

#### **Corpus Callosum**



#### Anterior Commissure





### **PROJECTION FASCICULI**



- Internal capsule

#### Fornix





#### **Internal Capsule**



# Tract Specific Measurements

- At end of every incremental step (0.5 mm), fractional anisotropy is determined
- Mean FA (or diffusivity) for entire bundle computed
  ROI<sub>1</sub> (XFA)

ROI<sub>2</sub>

 $\overline{FA} = \frac{1}{n} \sum_{i=1}^{n} \sum_{i=1}^{n}$ 

FA<sub>2</sub>

 $FA_4$ 

A Tractography Approach to Studying Fronto-Temporal Fasciculi in Schizophrenia and Late Onset Schizophrenia-Like Psychosis

### Jones DK et al.

Proc ISMRM 11<sup>th</sup> Ann Meeting, p 244.

# **SUBJECTS**

Young Patients 14 right-handed males Median age: Median duration of illness: Mean IQ:

34 years (22-53 years) 8 years (1 – 25 years) 110 (98 – 124)

Young Controls 14 right-handed males Median age: Median IQ:

34 years (22-53 years) 109 (99 – 123) ACQUISITION PROTOCOL 1.5 T GE Signa LX ( $G_{max}$ = 40 mT m<sup>-1</sup>)

## **Imaging Parameters** Acquisition Matrix Field of View

Slice Thickness / Gap # Slice Locations

Echo Time Repetition Time Duration of diffusion grads # *b*-matrices Total scan time

96 x 96 240 mm 2.50 mm / 0.0 mm **60 102 ms** 15 R-R (delay = 200 ms)17.3 ms  $71 (N_{low} = 7, N_{high} = 64)$ **14 minutes** 

#### Jones et al. Human Brain Mapping 15: 216-230 (2002)

## **ASSOCIATION FASCICULI**



- Superior longitudinal fasciculus
- Inferior fronto-occipital fasciculus
- Uncinate fasciculus
- Cingulum



# **ANALYSIS**

- Blind observer, tract-specific measurements of fractional anisotropy and mean diffusivity in (both hemispheres):
  - Uncinate Fasciculus (UF)
  - Superior Longitudinal Fasciculus (SLF)
  - Inferior Fronto-Occipital Fasciculus (IFO)
  - Cingulum
- ANCOVA (age as covariate) with effects:
  - Subject group (Patient / Control)
  - Hemisphere (Left / Right)
  - Fasciculus (UF / SLF / IFO / Cingulum)
- Post-hoc tests:
  - Tukey-Kramer for comparison of means
  - Holm procedure for comparisons of slopes

### Fractional Anisotropy vs Age in Controls



FRACTIONAL ANISOTROPY (FA)



TRACE



Pfefferbaum & Sullivan MRM 49:953-961 (2003)

### Fractional Anisotropy vs Age in Patients and Controls



Slopes significantly different (p = 0.0001)
### Fractional Anisotropy in Patients and Controls

| Effect     | Controls   | Patients   |
|------------|------------|------------|
| Age        | p < 0.0001 | p = 0.0106 |
| Hemisphere | p = 0.1311 | p = 0.8747 |
| Fasciculus | p < 0.0001 | p < 0.0001 |

#### Tract-Specific FA Measurements In Patients and Controls



#### Mean Diffusivity vs Age in Controls



# Mean Diffusivity vs Age in Patients and Controls



Slopes significantly different (p = 0.0041)

### Mean Diffusivity in Patients and Controls

| Effect     | Controls   | Patients   |
|------------|------------|------------|
| Age        | p = 0.2504 | p < 0.0001 |
| Hemisphere | p = 0.0978 | p = 0.0032 |
| Fasciculus | p < 0.0001 | p < 0.0001 |

Left hemisphere  $D = 0.738 \pm 0.056 \text{ x } 10^{-3} \text{ mm}^2 \text{s}^{-1}$ Right hemisphere  $D = 0.717 \pm 0.044 \text{ x } 10^{-3} \text{ mm}^2 \text{s}^{-1}$ 

#### Tract-Specific FA Measurements In Young Subjects



## CONCLUSIONS

- DT-MRI provides unique non-invasive characterization of neural tissue *in vivo*.
- Anisotropy measurements provide evidence of microstructural changes in alcoholism (in absence of macrostructural changes)
- Possibility of studying effects on connections in different circuits tract specific measurements.
- Correlate neurobehavioral patterns with DT-MRI characteristics.

## Acknowledgements

Wellcome Trust, UK (Grant number 054030/2/98) Dolf Pfefferbaum, SRI International, California, USA ICANA Organizing Committee

