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Abstract 

 Microarray technology for gene expression studies offer powerful new technology for 

understanding changes in gene expression as a function of other observable or manipulable 

variables. However, microarrays also pose a number of new challenges. One of the most 

prominent of these is the difficulty in establishing a procedure for declaring whether a gene’s 

expression level is associated with the independent variable that offers reasonable and 

specifiable false positive (type 1 error) and false negative (type 2 error) rates. Recently, Miller et 

al (1) offered a two-stage testing procedure to address these goals. However, information was 

not provided to indicate whether this procedure would or would not meet its objectives. Herein, 

we show mathematically that the two-stage procedure proposed does not provide benefits in 

terms of minimizing false negatives while controlling the false positive rate relative to standard 

single stage testing. Therefore, investigators are encouraged to consider alternative analytic 

approaches. 
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Introduction 

The advent of microarray technology for gene expression measurements opens many 

exciting opportunities and challenges in aging research (2,3). One of the major challenges 

involves determining whether a sample numerical difference in gene expression among two or 

more groups, conditions, or tissues represents a ‘statistically significant’ difference (4). This is 

challenging in part because microarrays allow one to simultaneously test for differences in 

thousands of genes, thereby creating a problem of multiple inference if one stays in the 

frequentist (5) null hypothesis testing paradigm (6). For example, if differences in each gene 

expression are compared at the 0.05 significance level for a microarray containing 10,000 

genes and the null hypothesis of no difference in gene expression were true for all genes, we 

would expect to observe approximately 500 ‘false-positives’ or genes for which a statistically 

significant difference is observed when there is, in truth, no difference.  This issue of multiple 

comparisons has long been a thorn in the side of researchers.  There are many accepted 

strategies for adjusting the significance level to ensure that the probability of making any false 

positive is equal to or below the desired significance level.  For example, a Bonferroni correction 

(8) divides the desired experiment-wise alpha level by the number of tests.  Each individual test 

is then conducted at this Bonferroni adjusted alpha level.  A criticism of this and similar 

approaches is the fact that by controlling the false positive rate, one becomes more likely to 

observe ‘false negatives’, or differences that fail to reach statistical significance when an actual 

difference exists.  An alternative approach for meeting this challenge was suggested in a recent 

paper (1) which “advocates a two-stage design in which significance testing applied to 

exploratory data is used to guide a second round of hypothesis-testing experiments conducted 

in a separate set of experimental studies” (p. B52).  Ideally, this method would control the 

experiment-wise alpha level or type 1 error rate (the probability of making any false positives in 

the study) while making fewer type 2 errors than the single stage design.  However, as 

previously noted (7), evidence has yet to be offered that the two-stage design procedure either 
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controls the experiment-wise type 1 error rate or reduces the risk of type 2 errors.  The purpose 

of this brief paper is to examine the type 1 error rate and power of the two-stage design and 

evaluate how these statistical properties compare to those of a single stage design.  

The Two-Stage Approach 

Miller et al’s approach (1) involves first testing for differences between two groups for all 

of k genes in one set of data (stage 1) using a stage 1 alpha level (which we will denote α1) 

greater than the alpha level that would be required by a Bonferroni correction. No specific 

mention is given as to how to choose α1, but Miller et al use α1 = .001 for an example with k = 

10,000, suggesting perhaps that they mean for α1 to be set somewhat below the more 

conventional .05.  The k hypothesis tests are then performed, yielding some number of genes, 

m, with significant effects (0 ≤ m ≤ k). Then, at stage 2, a second independent set of data is 

gathered and only those m genes found to be significant at stage 1 are tested at level α2 = 

.05/m. Any gene significant at level α2 “can be accepted as age sensitive” (1; p. B55). 

Presumably, although not explicitly stated, a 2-tailed hypothesis test is conducted at stage 1, 

while a 1-tailed test is conducted at stage 2.  The stage 2 test should test only in the direction 

that the apparent effect was observed at stage 1 because it would make little sense to conclude 

that there is an effect on the basis of two random samples producing significant results in 

opposite directions.  

This two-stage testing procedure was offered as one way of dealing with the problem of 

false positives (type 1 errors) that would result from multiple significance testing without 

correction and false negatives (type 2 errors) that would result from the use of a Bonferroni 

correction. However, concrete information indicating that this approach will achieve these goals 

has yet to be presented. First, although Miller et al do not state exactly to what overall alpha 

level this procedure holds the entire experiment, their use of .05 in determining α2 suggests that 

perhaps they intend to achieve an overall experiment-wise alpha level of .05. No information 
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has been offered as to whether the proposed design actually controls the experiment-wise alpha 

level.  Second, no information has been offered to indicate that this procedure is more powerful 

than simply testing all data together in a single stage design with a method that controls the 

experiment-wise alpha level. These questions are further evaluated below. It may be worth 

pointing out that the two-stage procedure under discussion is aimed at reducing purely 

stochastic threats to statistical inference and should be seen as distinct from constructive-type 

replications which have independent value in helping to eliminate non-stochastic threats to valid 

inference (9). 

Type 1 Error (False Positive) Rate  

Once one has reached stage 2, the probability of making one or more type 1 errors at 

this stage is equal to 1-(1-.05/m)m. This assumes one uses .05 as Miller et al do in their example 

(1).  In fact, one is free to choose any alpha level by simply substituting the desired level for .05 

in this formula. It should be noted that this formula is correct when all null hypotheses are true 

and all gene expression levels are independent. In reality, both of these conditions seem 

extremely unlikely to be met. To the extent that they are not met, the actual value of the stage 2 

type I error rate will lie somewhere between zero and 1-(1-.05/m)m. Due to the known 

conservativeness of the Bonferroni correction, if the stage 2 testing were the only testing 

involved, this formula would hold the overall alpha rate of the entire experiment (which we will 

denote αew) to a value close to (though just slightly less than) .05.  However, because we are 

testing in two stages, a type I error will be made only if genes for which no difference truly exists 

show significant differences (false positives) at both stages.  To obtain the experiment-wise 

alpha level, first compute the alpha level at stage 2 given that m tests were significant at stage 

1.  Then, because the number of genes significant at stage 1 (M) is a random variable, the 

experiment-wise alpha level is obtained by computing the weighted sum over all possible 

outcomes, m, with the weights representing the probability of that outcome. 
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Finally, if the probability of rejecting each test equals α1, the probability of observing m 

significant tests out of k independent tests can be described by the binomial distribution with 

parameters k and α1.  Taking this into account, the experiment-wise alpha level for the two-

stage design can be written as: 
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Clearly, αew is affected by the choice of α1.  To demonstrate this dependence, consider 

the example used by Miller et al  (1) where k=10,000, α1 = .001 and α2 = .05/m. Under this 

circumstance, αew = .049 which is very close to the level of .05 that might be desired. However, 

if α1 were switched to .0001, a value still greater than the Bonferroni corrected value 

(.05/10000), then the overall type 1 error rate becomes only .0314.  Furthermore, using the fact 

that the stage 2 alpha level will be less than or equal to .05, a simple bound on the experiment-

wise alpha level for the two-stage design is: 
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 This demonstrates that the two-stage design is often conservative, leading to an experimental-

wise alpha level which is lower than that desired.  Furthermore, as the choice of α1 becomes 

smaller, the experiment-wise alpha level of the two-stage design becomes more conservative. 

As the formula above shows and the example illustrates, the two-stage procedure fails to 

consistently hold the overall alpha level at .05. On the contrary, one can more easily achieve the 

goal of holding αew = .05 in a single stage design by simply setting α1 = 1-(1-.05)1/k, and only 

conducting a stage 1 analysis. This provides a correction that is nearly equivalent to the 
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Bonferroni correction, but less conservative. Nevertheless, perhaps the two-stage procedure will 

reduce the type 2 error rate (i.e., increase power) relative to a one-stage procedure with α1 = 1-

(1-.05)1/k. 

Power & False Negatives 

Using the between groups t-test as Miller et al (1) discuss and assuming conditions for 

its use are valid (i.e., normality, homoscedasticity, independence of observations), an effect size 

for a specific gene can be expressed as 1 2µ µ
δ

σ
−

= , where µ1 is the population (not sample) 

mean level of gene expression for one group of subjects (group 1), µ2 is the population mean for 

the second group (group 2), and σ is the common within-group standard deviation. Then, 

assuming equal numbers of subjects per group, and denoting the total number of subjects by 

2n, the non-centrality parameter for the t-distribution with 2n-2 degrees of freedom (df) for 

testing the between group difference is 
2

1 2
nδ

ω = . Let tν,α represent the value that cuts off the 

upper 100*α percentile of the central t-distribution with ν degrees of freedom and let F(x,ν,ω) 

denote the cumulative distribution function at the point x of a noncentral t-distribution with ν 

degrees of freedom and noncentrality parameter, ω.  The power for single-stage testing can be 

written as ( )11 / 2 11 , 2,P F t nα ω= − − . 

If one splits one’s sample into two non-overlapping sub-samples to be used in the two 

stages, then the power calculation is somewhat more complex. Miller et al (1) did not state how 

the subjects should be divided between the two stages, but for our subsequent calculations, we 

will assume subjects are divided equally between the two stages. Because a significant result 

will occur only if the gene showed statistically significant differences at both stages, the power 

for two-stage testing will equal the product of the probability (power) of obtaining a significant 

result at stage 1 and the probability (power) of getting a significant result at stage 2 given a 
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significant result at stage 1. The probability of getting a significant result at stage 1 can be 

derived just as above for single-stage testing, with the exception that the sample size will now 

be half of that used in the single stage design.  As a consequence, the non-central t-distribution 

will now have 
2

2 4
nδ

ω =  and df=n-2. Once a significant result is obtained at stage 1, the 

conditional probability of getting a significant result at stage 2 depends on how many other 

genes (C) were declared significant at stage 1. Because C is a random variable, we must then 

sum these conditional powers over all possible outcomes for C, weighting by the probability of 

that outcome.  Then, the power for two-stage testing can be written as 
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Note that the third term within the square brackets on the right side of the equation is for the 1-

tailed test at stage 2. For any given value of c, ( )P C c=  depends on the power of the tests for 

the other genes which may vary from one data set to the next and will be unknown. Therefore, 

in order for us to calculate ( )P C c=  we need to assume some model. For simplicity, we 

assume that the null hypothesis is true for all genes except the one for which we are calculating 

power.  Were we to assume the null hypothesis is not true for other genes as well, we would 

increase the probability of declaring a larger number of genes significant at stage 1.  As more 

genes are declared significant at stage 1, the stage 2 alpha level used for each individual test 

will become smaller, hence reducing the stage 2 power for that test.  As a consequence, the 

overall power will be smaller than it would be under the assumption that the null hypothesis is 

true for all genes except the one of interest.  That is, by assuming that the null hypothesis is true 

for all genes except one for which we are calculating power we are, for any particular effect size 

and sample size, deriving the maximum possible power for the Miller et al two-stage procedure 
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(1). Using the same reasoning as for M above, C will follow a binomial distribution with 

parameters k-1 and α1 and we can write the power for the two-stage design as: 
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Quantitative Results 

Having derived expressions for power using both single-stage and two-stage testing, we 

can begin to compare their relative power. Let us return to Miller et al ’s example of 10,000 

genes. To maintain αew = .05 with single-stage testing of 10,000 genes requires a per test alpha 

of α1 = 5.13x10-6. Figures 1 and 2 compare the power for single-stage and two-stage testing 

with two different levels of α1 (.001, .0001) across a range of effect sizes.  Figure 1 corresponds 

to the Miller et al example of 10 subjects per group, while Figure 2 demonstrates the same 

results for a study with 20 subjects per group.  The figures clearly demonstrate that Miller et al ’s 

two-stage procedure does not achieve the goal of providing a method that reduces false 

negatives (i.e., increases power).  In fact, it can even exacerbate the very problem it is intended 

to alleviate. For example, under the scenario considered in Miller et al’s paper (α1 = .001,  

δ = 3.0, n = 10),  the power for a single-stage test is .614 (calculations were conducted using 

SAS/IML) but the power is only .409 for the two-stage approach. 

It may not be all that surprising that the two-stage approach results in reduced power 

because one can see that it creates a kind of paradox in which identical information is treated 

differently depending on the sequence in which it occurs. For example, assume α1 < α2 and that 

the p-value obtained for testing a gene in the first stage is less than α1 while the p-value 

obtained at the second stage is between α1 and α2.  Using the two-stage approach, differences 

for this gene would be declared significant. In contrast, a gene for which the p-value at stage 1 

is between α1 and α2 and the p-value at stage 2 is less than α1 would not be declared 

significant. Yet the two situations offer equivalent evidence against the null hypothesis. The fact 



JG-01-0060-BS-Revision 1 

Page 10 

that evidence against the null hypothesis in this second situation is ignored shows that 

information is being discarded and it is therefore not surprising that power is lost. 

Conclusion 

In conclusion, the two-stage procedure offered by Miller et al (1) often fails to hold the 

overall experiment-wise type 1 error rate to some desired alpha level.  Many choices of α1, the 

per-test alpha level at stage 1, will result in an overall experiment-wise type 1 error rate that is 

overly conservative. Less conservative, single stage methods of holding the overall type 1 error 

rate to any desired level exist (10). Moreover, this two-stage method can also exacerbate the 

false negative (type 2 error) rate, that is, decrease power compared to a single stage method. 

While the two-stage design does not fare well when compared statistically to the single 

stage design, there may be non-statistical concerns which increase the attractiveness of the 

two-stage design.  For example, it is possible that such a two-stage approach could improve 

power per dollar spent on a study if, at stage 2, one needed only to assay a subset of all genes 

on the array used in stage 1 and the cost for assaying a subset was less than the cost for 

assaying the entire set.  In such situations, both the costs and required resources per subject in 

stage 2 (and hence the entire study) might be substantially reduced. Furthermore, the two stage 

design proposed by Miller et al represents only one possible type of two (or more generally 

multi) stage design.  It is possible that other two-stage designs could be proposed which have 

better statistical properties and compare more favorably to the single stage design. 

In attempting to interpret these results, one question that may be of primary interest to 

researchers regards the size of the mean differences represented by the effect sizes shown in 

Figures 1 and 2.  To address this issue, we can offer the following information. Writing from the 

social science perspective, Cohen (11) defined 'small,' 'medium,' and 'large' effect sizes as 

values of 0.20, 0.50, and 0.80, respectively. By this standard, an effect size of 3.0, as in the 

example considered by Miller et al (1) is extremely large. However, in basic laboratory research, 

effect sizes are often much larger. For example, consider a study of a knock-out mouse model 
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of hereditary haemochromatosis (12). When knock-out mice were compared to wild-type mice 

the "iron concentration in livers were: 170 +/- 15 mu g/g (mean +/- SD) in controls and 1010 +/- 

50 mu g/g in beta 2m (-/-) mice." This represents an effect size of 22.6. Unfortunately, because 

fold-change is not a statistic that takes within-group variability into account, there is no way to 

directly translate an effect size expressed as a standardized mean difference into a specific fold-

change value. 

Finally, the two-stage procedure discussed operates from a strictly frequentist point of 

view under the seemingly implausible assumption of the null hypothesis being true for all genes 

studied. Alternatives to a strict frequentist approach exist (e.g., 4; 13; 14) and are seen by many 

(e.g., 15) to be preferable when conducting many tests and a global null hypothesis seems 

untenable.  
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FIGURE 1. COMPARING POWER OF THE TWO DESIGNS 
(n=10) 

 

 

 

FIGURE 2. COMPARING POWER OF THE TWO DESIGNS 
(n=20) 

 


