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SUMMARY

Infection with West Nile virus (WNV) drives a wide range of responses, from asymptomatic to flu-like
symptoms/fever or severe cases of encephalitis and death. To identify cellular and molecular signatures
distinguishing WNV severity, we employed systems profiling of peripheral blood from asymptomatic
and severely ill individuals infected with WNV. We interrogated immune responses longitudinally from
acute infection through convalescence employing single-cell protein and transcriptional profiling comple-
mented with matched serum proteomics and metabolomics as well as multi-omics analysis. At the acute
time point, we detected both elevation of pro-inflammatory markers in innate immune cell types and
reduction of regulatory T cell activity in participants with severe infection, whereas asymptomatic donors
had higher expression of genes associated with anti-inflammatory CD16+ monocytes. Therefore, we
demonstrated the potential of systems immunology using multiple cell-type and cell-state-specific ana-
lyses to identify correlates of infection severity and host cellular activity contributing to an effective
anti-viral response.

INTRODUCTION

West Nile virus (WNV) is a global mosquito-borne pathogen which can cause severe neurological illness, especially in immunocompromised

and older individuals.1,2 Since being introduced to the United States in 1999, the virus has spread through North and South America3 and

more than 51,000 cases have been reported, including 2,390 fatalities.4,5 By 2016, infections in the USA were estimated at 7 million people.6

While about 80% of infected people have an asymptomatic infection, approximately 20% experience mild illness with fever symptoms, and a

minority of cases (�1%) experience severe, neuroinvasive disease.7

To understand the broad range of clinical symptoms and determinants of susceptibility to severe WNV disease, we must consider ele-

ments of the pathogen, vector, and host. The dominant circulating strain of WNV in North America since 2001 (WN2002) and the proportion

of severe cases reported across the country have remained fairly constant over two decades.3–5 Thus even though environmental variation in

climate, mosquito, and bird populations are relevant for the frequency of exposures,8 variations in host responses contribute significantly to

the range of disease severity in human cases.
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A number of host factors are relevant for susceptibility to severe WNV. These include genetic analyses that identified variations in several

immune-related genes in individuals at increased risk for severe disease9–11 including those involved in type I interferon (IFN) pathways which

are critical for control ofWNV infection.12 The critical roleof type I IFNpathwayhasbeenconfirmed inexperimental studies13,14 as have immune

pathways involved in recognition andclearanceofWNV, includingRIG-Imediated immune responses.1,7,15–17Moreover, recent studies ofmul-

tiple cohorts of WNV disease from the EU and the USA showed that auto-antibodies neutralizing IFN-a and/or IFN-u are found with greater

frequency in patients with severe infection and accounted for at least a third of 441 hospitalizations for life-threatening WNV disease.18,19

Notably, age is a critical risk factor for WNV, and the majority of severe cases are over age 60.5,8 Aging is associated with a well-documented

decline in immune recognitionandsignalingbypathogen recognition receptors suchasToll-like receptors (TLRs), RIG-I (retinoic acid-inducible

gene I), and RLR (RIG-like receptors), highly relevant for responses to infection with WNV and type I IFN responses to viral infections such as

WNV and influenza and responses to vaccination.20–25 But while symptomatic WNV infection occurs predominantly in older people,26 there is

no significant difference with age among asymptomatic participants, underscoring the critical role of individual host response mechanisms.27

Investigating transcriptional and functional immune responses in blood of recovered WNV patients, we previously identified a suscepti-

bility signature in innate immune cells including interferon pathways, production of the chemokine CXCL10, and a key role for reduced induc-

tion of pro-inflammatory cytokine interleukin (IL)-1b in severe infection.28 IL-1b has also been shown to be critically important for control of

WNV in the brain.29 In addition, symptomatic patients have been reported with reduced numbers of T cell subsets (Th1/Th17 and Tregs)

and elevated expression of Tim-3+ and atypical T cells.30–32 Notably, antibodies against WNV were durable and were not different between

asymptomatic and symptomatic adults for titer or epitopes targeted.33 However, studying samples collected after infection resolves, we

cannot distinguish whether features may be a cause or a consequence of clinical severity. Taking advantage of advances in systems immu-

nology, and an unusual recruitment strategy, we investigated immune responses during acute infection from asymptomatic and symptomatic

participants using multiple omics profiling platforms and integrating high resolution methods of cellular, transcriptomic, proteomic, and

metabolomic analyses. Comparing stratified participants longitudinally at acute and convalescent time points, we have taken advantage

of stable characteristics of immune cell frequencies and gene expression in individuals34–36 to identify molecular signatures and cell states

and integrated temporal responses associated with resistance to severe WNV infection. These signatures may provide relevant guidance

for timely therapeutic responses in severe infections.

RESULTS

WNV study population for longitudinal immunophenotyping profiles

To investigate immune-related differences in infection with WNV contributing to the divergence in the clinical course and identify responses

related to severe infection, we enrolled two groups of WNV participants in Houston, TX. Hospitalized patients had acute CDC-defined WNV

infection including clinical criteria of mild symptomatic response or severe neurologic disease, with no specific treatments for WNV.37 We

enrolled acutely infected asymptomatic participants found to be viremic while volunteering to donate blood. Our unusual recruitment criteria

allowed us to enroll both severity groups at comparable duration of viral exposure (�7 days). Immune signatures from asymptomatic (WNA)

and symptomatic (WNF fever and WNE neurologic) study participants were assessed at enrollment (Day 1) and at follow-up time points of

Month 3 and Year 1 of convalescence (n = 11; Table 1).

Immune cell frequency and functional status in WNV infection

For profiling frequency and functional status of immune cells, we assessed whole blood samples using the SMART Tube system to stabilize

cell phenotypes.38 Untreated cryopreserved samples were profiled using CyTOF, employing a 40-marker antibody panel to broadly quantify

both immune cell lineages and functional markers (Table S1). To reduce experimental variation, all samples were assayed together using a

uniform lot of reagents and including a spike-in reference with each sample as described previously.39 Data from the reference cells parti-

tioned from WNV samples were assessed by PCA. No evidence of batch effect from the reference cells was observed across all symptom

status or time points of sample collection (Figure S1).

Cell types from whole blood samples were manually annotated based on characteristic lineage markers (Figure 1A) using a defined cell

ontology (Figure S2B).40 Using a whole blood sample allows a detailed examination of 29 cell subsets including polymorphonuclear leukocytes

(PMN), themost abundant immune cell type in circulation, and 28 subsets of peripheral bloodmononuclear cells (PBMCs).Many infection-related

differences incell frequencyweredetected inbothasymptomaticandsymptomaticgroups.Analysisof cell frequencies foreach individual showed

an elevated frequency of PMN in total cells at acute viral infection compared with his/her own convalescent sample at Month 3 time point

Table 1. Demographics of study participants

Parameter Asymptomatic (n = 4) Symptomatic (n = 7) Total (n = 11) p value

Mean age (yr) (SD) 67.8 (7.4) 52.9 (14.0) 58.3 (13.9) 0.0471a

range 59–77 28–68 28–77

No. (%) of females 0 (0) 2 (29) 2 (18) 0.0215b

aAge: Using t test, two-tailed.
bGender: Using Chi-square test.
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(Figure1B;Day1 vs.Month3p=0.003 for asymptomatic; p=0.0002 for symptomatic).Nosignificantdifferences for frequencyofPMNwerenoted

between severity groups (Figure 1B). We have previously shown a biphasic role for PMN inmurineWNV infection with an initial phase permissive

for viral replicationandcontributing todisseminationandsubsequently later in infectioncontrollingviremia.41WithinPBMCsother innate immune

cell types also showed significant elevations at the acute time point reflecting expected increases during an acute viral infection.39,42 Levels of

CD14+ classical monocytes in PBMCs were elevated at Day 1 for all participants compared to each individual’s Month 3 and Year 1 of convales-

cence (Figure 1B; acute vs.Month 3p=0.0199 for asymptomatic; p= 0.009 for symptomatic).Overall, wedetected elevated frequencies>1.1-fold

for 18 of 28 PBMC cell subsets during acute infection compared to convalescent time points, including a marked elevation in the frequency of

memory B cells (Bm), which may be expected as antibody responses develop (Figure 1B; Day 1 vs. Month 3 p = 0.0015 for asymptomatic;

p < 0.0001 for symptomatic). All subject groups showed elevated levels of activated CD8+ T cells (CD8+ T) at Day 1 compared to convalescent

time points (Figure 1B; Day 1 vs. Month 3 p = 0.0013 and 0.0005 for asymptomatic; p < 0.0001 for symptomatic). A similar pattern was noted in

activated CD4+ T cells (Day 1 vs. Month 3 p = 0.0013 for asymptomatic; p < 0.0001 for symptomatic).

While many cell types were more abundant during acute infection, in contrast, we detected significantly lower frequencies at Day 1 for

natural killer (NK) cells (Figure 1B; p < 0.0001 for asymptomatic; p = 0.0002 for symptomatic). We previously showed that a more immature

subset of NK cells is highly responsive to WNV with degranulation and cytokine production.43 Significant increases over the time course were

also detected for levels of activated Tregs (Treg-act) which have an important role in resolution of inflammation (Figure 1B; Day 1 vs. Year 1 p =

0.0028 for asymptomatic; p = 0.0002 for symptomatic). These increased levels over time are consistent with previous reports for symptomatic

WNV patients30 and notably were equivalent between asymptomatic and symptomatic participants. Overall, quantifying frequencies of

multiple immune lineages showed consistent changes longitudinally in cell type abundance whether or not participants experienced symp-

tomatic illness. This reveals ongoing ‘‘shadow’’ immune responses in asymptomatic individuals and suggests that cell frequency alone is not

sufficient to distinguish immune responses leading to severe disease.

In our phenotyping profile, we quantified 20 markers of cellular activation to assess functional changes which may contribute to suscep-

tibility to severe infection. This multiparameter platform allows us to interrogate each marker in 29 cell subsets for a total of 580 marker/cell

type combinations. In response to infection with WNV, we detected elevated proinflammatory activity in multiple cell types at the acute time

point with levels decreasing at Month 3 and Year 1 (Figure 2A; Figures S3A and S3B). Remarkably, numerous activation markers were altered

equivalently across subject severity cohorts with 451/580 combinations being higher at Day 1 compared toMonth 3. Highly expressedmarkers

at the acute timepoint included L-selectin adhesionmoleculeCD62L,marker of activation of PMNandmonocytes, and an important factor for

lymphocyte trafficking out of the blood.44 Elevated levels of CD41, the integrin glycoprotein IIb/IIIa, were also detected in multiple cell lin-

eages during acute infection, whichmay reflect interactions with platelets which are readily apparent in the whole blood samples being exam-

ined here. This finding is consistent with well-characterized binding of platelets to activated leukocytes.45 In addition, CD41 was expressed on

precursor cells which may be more abundant during acute infection.46 The marker CD279 (PD-1) was elevated at the acute compared to

Figure 1. Frequency of immune cell subsets of WNV infected participants

Blood samples were collected into SMART tubes from WNV asymptomatic (n = 4) and symptomatic (n = 7) participants at acute Day 1 and convalescent time

points at Month 3 and Year 1. Whole blood cells were labeled for immune cell markers and profiled by CyTOF in one batch. Frequency of PMN and 28

PBMC subsets were defined by expression of lineage markers (Figure S2B).

(A) Frequency of 28 PBMC subsets shows the variation of cell frequencies in asymptomatic and symptomatic groups at the time points indicated for cell types

shown (CD4+ and CD8+ subsets for naive (n), effector memory (em), central memory (CM), activated (act), and effector (Temra).

(B) Differences in frequencies of cell subsets between cohorts and time points were assessed by one-way ANOVA with Tukey’s multiple comparisons test

(*p < 0.05, **p < 0.01, ***p < 0.001, and ***p < 0.0001). No significant frequency differences were found between asymptomatic and symptomatic groups.

Data are represented as mean G SD. See also Figures S1 and S2.
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Month 3 time point, which may be important for development of CD8+ T cell memory responses.47 These elevations in immunomodulatory

markers resolved and were not significant between groups at Month 3 or Year 1 (Figure S3).

To investigate functional differences contributing to the divergence in the clinical course, we identifiedmarker/cell type combinations that

were significantly different between symptomatic and asymptomatic participants. Of the 274 cell type/marker combinations above a

threshold of 20% of baseline of mean channel intensity, we found 181 cell type/marker combinations expressing intensity differences

>10% between severity groups (Figure 2B). At the acute time point in symptomatic participants, we detected significant elevations for com-

binations of pro-inflammatory functional markers in innate immune cell types, including elevated expression of cytokines (IL-1b, MIP1b, IL-6,

IL-8, and TNFa) in PMN and in monocytes; phosphorylated signaling intermediates (pSTAT1 and pSTAT3) and the inflammatory marker

CD62L, known as L-selectin, in PMN, monocytes, NK, and DC (Figure 2B, p = 0.038 and 0.024 for pSTAT3 in monocytes and CD16� mono-

cytes). Elevations in functional markers in adaptive cell types in symptomatic participants include TNFa in naive CD4+T cells (p = 0.049), CCR7

in CD4+ T cells (p = 0.006), pSTAT5 in activated CD4+ T cells (p = 0.012), and numerous markers in CD8+ T cells including CD62L, CD152, and

IFNg and CD69, the C-lectin receptor marker of lymphocyte activation increased in several subsets of T cells (CD4+ Tem, CD4+Tact cells, and

naive Treg) (Figure 2B, p = 0.042/0.034 for IFNg/CD152 in naive CD8+ T cells; p = 0.022 for CD62L in activated CD8+ T cells). The elevated

expression in symptomatic patients of phospho STAT3 in monocytes and phospho STAT5 in CD4+ T cells identifies key pathways increasing

production of inflammatory cytokines such as IL-6. An elevated inflammatory milieu has previously been reported to contribute to perme-

ability of the blood-brain barrier,48 thus the skewing toward pro-inflammatory responses in symptomatic participants may contribute to

severity of infection. A lower inflammatory profile in asymptomatic participants may be beneficial for antiviral responses. Comparing longi-

tudinally for each individual, no significant differences were detected between asymptomatic and symptomatic participants at convalescent

time points suggesting that key differences in clinical trajectory occur during acute infection.

Transcriptional profiles of immune response to WNV infection

To collect additional in-depth measurements of cellular function duringWNV infection and investigate functional differences contributing to

the divergence in clinical course, we assessed transcriptional profiles as an additional measure of functional status to track changes in cell

responses during infection with WNV. We used PBMCs collected at the same time points from our study participants to identify differential

Figure 2. Altered immune functional markers during acute WNV infection

Whole blood cells fromWNV patients (n = 11) were labeled with metal-conjugated antibodies and analyzed by mass cytometry to quantify levels of 20 functional

markers in 28 cell subsets.

(A) Change in median channel intensity at acute vs. Month 3 convalescent time point (ratio log10 acute/convalescent). Significance by generalized linear mixed

model with *p < 0.05, **p < 0.01 and ***p < 0.001.

(B) Log10 ratio of symptomatic/asymptomatic of marker/cell type combinations shown for individual cell subsets with fold change of greater than 10% of baseline

where size of circle reflects the average expression level of a marker in a cell type. Statistically significant combinations in permutation analysis are shaded in red,

where the observed log ratio of expression in symptomatic relative to asymptomatic occurred less than 5% of the time in the permuted distribution. See also

Figures S1–S3.
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expression patterns longitudinally and relevant to severe infection. PBMCs were assessed using the Seq-Well platform for efficient single-cell

RNA-seq.49 PBMC samples provided 5,243 transcripts and 1,776 genes per cell on average for 56,858 cells sequenced and pre-processed.

Cell types were identified by unsupervised clustering and differential expression analysis together with 36 canonical lineage marker genes

in an iterative manner using the Seurat R package (Figure 3A; Figure S4).50 The uniform manifold approximation and projection (UMAP) dis-

plays 11 cell types with innate cell lineages (conventional and plasmacytoid dendritic cells (cDCs and pDCs), monocytes, natural killer, NK)

separated from T cell subsets and B cells (Figure 3A). Notably, UMAP shows separation of the 3 severity groups by time points—acute

(T1), Month 3 (T2), and Year 1 (T3)—where samples from the acute time point clustered together most closely and later time points show

considerablemixing among severity groups indicating the transcriptional similarity of cells. As expected, the frequencies of cell types defined

by gene expression are consistent with but not identical to cell frequencies defined in CyTOF by protein expression markers, showing slight

differences between the two platforms.

Gene modules reveal transcriptional responses to WNV infection

Using expression data for the 11 cell types, we used the weighted gene co-expression network analysis (WGCNA)-basedmodule discovery51

to first identify significant modules of co-expressed genes for each of the 11 cell types. We compared all possible condition pairs to identify

differential modules for the 18 condition pairs. There were 107 significant modules identified from 10 cell types (excluding B cells), from which

we identified 47differential moduleswith fold change>1.3 andmean p value <0.01 in at least one condition pair (Figure 3B; Table 2) with both

elevated and reduced gene expression for all severity groups. The numbers of module genes range from 10 in module 2 of pDCs to 161 in

module 1 of CD14+ monocytes. We gave particular attention to 12 modules from eight cell types selected by visual assessment of module

score distributions showing themost dramatic differences between time points or severity groups as well as the top 10 genes in eachmodule

whose expression profiles are most correlated with the module scores (Table S2). For temporal signatures, we identified module 1 in CD14+

monocytes, module 1 in CD16+ monocytes, modules 1 and 3 in CD8+ T cells, modules 1 and 4 in cDCs, and module 3 in NK cells. For signa-

tures reflecting disease severity, we identified modules 1, 2, and 3 in CD16+ monocytes, module 2 in CD4+ T cells, modules 1 and 4 in cDCs,

module 1 in pDCs, and module 6 in plasma B cells. The majority of differential modules revealed signatures related to the time course of

Figure 3. Seq-Well transcriptomic analysis of response to WNV infection

(A) UMAP projection shows distribution of 11 cell types and 9 cell states. WNA=Asymptomatic, WNE= encephalitis, WNF = fever, T1 = Day 1, T2 =Month 3, and

T3 = Year 1 with the number of participants in parentheses for each respective condition.

(B) Heatmap of signedmodule scores for 42 differential modules and 18 condition pairs for which there are significant differences with fold change >1.3 andmean

p value <0.01. For a given condition pair in each column, positive (red) and negative (blue) reflect a higher module score in the first condition score or second

condition, respectively. Condition pairs are marked for significant differences between time points (circle; d) and between severity groups (triangle; ;).

(C) Violin plots of module scores for 3 differential modules of interest elevated at the T1 time point. The subject-level median values in each condition are shown in

open circles, while the condition-level median values in solid triangles.

(D) Violin plots as in (C) decreased at the T1 time point. See also Figure S4, Data S2, and Tables S2 and S3.

ll
OPEN ACCESS

iScience 26, 108387, December 15, 2023 5

iScience
Article



infection, with significant changes from the acute time point Day 1 (T1) to the convalescent time point at Month 3 (T2) or Year 1 (T3). For

example, the module scores andmarker expression were higher in T1 than T2 and T3 in all severity groups for module 1 in CD14+monocytes,

for module 4 in cDCs, and for module 3 in CD8+ T cells (Figure 3C).

Examination of the upregulated genes in these modules revealed many genes relevant for response to acute viral infection and innate

immune pathways. In particular, module 1 in CD14+ monocytes, which is upregulated in acute infection, contained 162 genes which are en-

riched in critical pathways to support cell metabolic function and to initiate immune cell responses (hypoxia and glycolysis, HIF-1, and IL-2

signaling). The top differentially expressed genes in CD14+ monocyte module 1 include genes involved in cell attachment and integrin

signaling reflecting the need for dynamic rearrangements of the actin cytoskeleton for spatial reorganization of receptors and adhesion mol-

ecules: TIMP1, a metalloproteinase inhibitor which plays a role in integrin signaling and activates cellular signaling cascades via CD63 and

ITGB1; SDC2, a heparan sulfate proteoglycan which has been implicated in regulation of cytoskeleton organization and integrin signaling;

THBS1, thrombospondin, an adhesive glycoprotein that mediates cell-to-cell and cell-to-matrix interactions; and SERPINB2, a regulator of

cell movement.52 Detailed examination of genes highly expressed in CD14+ monocytes module 1 at the acute time point includes (a)

CD86, a marker of activated dendritic cells; (b) cytokines, chemokines and their receptors (ILIRN, CCL2, IRF1, IL6R, CLEC5A, CCL7, IFITM10,

CD9, CSF1, DOCK4, ILIR1); (c) signaling elements including MAP3K8, NFkB1, and HIPK2 which we have shown is necessary for interferon

response in WNV infection by phosphorylating the transcription factor ELF453; and (d) DUSP4 and DUSP5, dual tyrosine/threonine phospha-

tases which regulate immune cell activity by inactivating MAP kinases.54 The 162 genes in CD14+ monocyte module 1 reflect key responses

needed tomount an immune response to viral infection.Notably, the number ofmonocyteswas highly elevated in frequency at the acute time

point (Figure 1B) thus further amplifying the net levels of these genes in acute infection.

Module4 forcDCs, alsoenrichedat theacute timepoint, includes immunesignalinggenesrelated toHIF-1, inflammatory response,andTNFa/

NFkbpathways.Many of the innate immune response genes in thismodule are sharedwithCD14+monocytesmodule 1–36 genes in common—

such as CD86, SERPIN family genes, TIMP1, SDC2, JARID2, DUSP4, and chemokine and TNF pathway genes (Table S3). In addition to the

responses from innate immune cell types, genes in module 3 from CD8+ T cells were highly expressed at the acute time point and enriched in

pathways for TNFa/NFkb as well as NOD signaling pathways. Top genes expressed in this module also include genes involved in transcriptional

regulation and signaling, e.g., JMJD1C (KDM3C) histone H3K9 demethylase, PMEPA1, a negative regulator of TGF-b signaling,55 and LUZP1

Table 2. Top pathways in Seq-Well differential modules

Cell type Module Number of genes per module Top pathways in module

CD14+ Monocytes 1 162 HIF-1; hypoxia; glycolysis; IL-2/STAT5

CD16+ Monocytes 1 16 Leishmaniasis; Yersinia infection; Apical

Junction; mTORC1

CD16+ Monocytes 2 11 Amphetamine addiction; IL-17; TNF-a/NF-kB

CD16+ Monocytes 3 16 Mineral absorption; Iron metabolism;

Apoptosis; IL-2/STAT5

CD4+ T Cells 2 11 Osteoclast differentiation; TNF- a/NF-kB;

Neuroinflammation

CD8+ T Cells 1 35 Bacterial invasion of epithelial cells;

Pathogenic Escherichia coli infection;

Interferon Gamma Response

CD8+ T Cells 3 20 NOD-like receptor signaling; Ferroptosis;

TGF-b; TNF-a/NF-kB

cDCs 1 109 Hematopoietic cell lineage; Macrophage

markers; Complement system of innate

immunity

cDCs 4 119 Ferroptosis; HIF-1; NAD metabolism,

sirtuins and aging; TNF-a/NF-kB;

Inflammatory response

NK Cells 3 15 Neuroinflammation; TNF-a/NF-kB;

hypoxia; TGF-b

pDCs 1 11 IL-17; Neuroinflammation; TGF- b;

TNF-a/NF-kB; hypoxia

Plasma B Cells 6 32 N-Glycan biosynthesis; Interferon gamma

response; IL-2/STAT5; TNF-a/NF-kB

In-depth analysis for 12 selected differential modules identified usingWeightedGeneCo-ExpressionNetwork Analysis (WGCNA) framework. Top pathways were

identified using Enrichr.
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(leucine zipperprotein1), an actin-stabilizingprotein56 (TableS3). The increasedaverageexpressionofCD8+Tcellmodule 3genescorrelateswith

the elevated frequency of CD8+ T cells identified by CyTOF at this time point across severity groups, consistent with a robust anti-viral response

mounted by expanded CD8+ T cells.

Concomitantly with the elevated modules were gene modules with lower expression at the acute time point, genes which may be down-

regulated to enhance an effective anti-viral response (Figure 3D). Across severity groups at T1, we detected lower expression of module 1 of

CD16+ monocytes characterized by mTORC1 pathway; module 1 of cDCs defining pathways of hematopoietic cells and complement; and

module 1 of CD8+ T cells including genes in the IFNg response (Table S3). Module 1 of CD16+ monocytes includes the anti-viral protein

SAMHD1, actin and actin binding protein CAP1 and LCP1 (L-plastin) that stabilizes integrin binding for the immune synapse with cytotoxic

T cells,57 and inflammatory mediator CYBB, cytochrome b-245 beta chain), a component of the phagocyte NADPH oxidase complex

(Table S3). Three of the top 10 genes in cDC module 1 are members of the S100 family and have significant roles in immune signaling and

responses. S100A8 and S100A9 are the subunits of the calcium- and zinc-binding heterodimer calprotectin, which is a biomarker of inflam-

mation and a potent chemotactic factor58 (Table S3). S100A4 is a calcium binding hypoxia-inducible gene (Table S3). Reduced expression of

these genes reflects the regulated program of cellular responses to viral infection and for these genes was not found to be different between

asymptomatic and symptomatic cases.

Gene modules distinguish WNV severity groups

In addition to longitudinal changes in gene expression, our analysis detected modules which distinguish severity groups. The module scores

were lower in asymptomatic compared to symptomatic groups for modules 2 and 3 in non-classical (CD16+CD14-/dim) monocytes, module 2

in CD4+ T cells, and module 1 in pDCs. Asymptomatic participants had higher expression of module 1 in CD16+ monocytes andmodule 1 for

cDCs (Figure 3B). These gene changes identified in asymptomatic participants may be critical elements of immune responses relevant to

reduced susceptibility to severe disease. Notably 4 of the 6 modules which distinguish severity groups were expressed at lower levels in

asymptomatic donors suggesting either control of exuberant response to the virus may be a key part of asymptomatic infection or higher

inflammatory responses occurredwith symptomatic infection.Of the sixmodules showing the highest significant differences between severity

groups, five modules are related to responses of innate cell types. In particular, CD16+ monocytes, considered anti-inflammatory in some

settings,59 are the most highly represented (3 of 6 modules). Of particular interest is higher expression of genes at the acute time point by

asymptomatic donors in CD16+monocytesmodule 1 (also shown to be lower at acute timepoint in all groups) which includes anti-viral protein

SAMHD1, actin and actin binding protein LCP1 and CAP1 as detailed previously (Table S3). Module 1 in cDCs is higher in asymptomatic do-

nors, including CD62L (SELL) previously noted to be elevated in CyTOF assays (Figure 2A); 5 genes in the S100 immune signaling family; and

genes predominantly included in the type I IFN response such as OAS3.

Furthermore, asymptomatic donors at the acute time point show reduced expression of genes in modules 2 and 3 of CD16+ monocytes

compared to the severe patients with encephalitis. Thesemodules include immune signaling intermediates FOS, FOSB, and JUN, in the TNFa

signaling pathway, and genes related to apoptosis. Another top gene expressed by CD16+ monocytes in module 3 is anti-inflammatory

ANAX1 (annexin A1).60 Asymptomatic donors also show reduced expression of inflammatory genes in module 2 by CD4+ T cells which

may contribute to less severe responses. Top genes in CD4+ T cells module 2 include CITED2, a transactivator which negatively regulates

HIF-1, and transcription factors such as RXRa, NF-kB, STAT261 as well as other transcriptional regulators including JUN, JUNB, NUNB,

FOS, FOSB, SOCS3. The collective differences between asymptomatic and symptomatic responses revealed here through the transcriptional

analysis reflect reduced expression of pro-inflammatory and apoptotic signaling genes in asymptomatic donors. The asymptomatic response

is also characterized by increased expression of genes involved in cytokine responses IFNg and TNFa/NFkB, IL-2/STAT5 signaling, and an

increased expression of IFN anti-viral genes.

Ligand-target interactions in transcriptional responses

Having identified those differential modules of co-regulated genes associated with stage of infection or with disease severity, we employed a

ligand-target inference tool,NicheNet,62 to infer potentially functional ligand-target pairs for the 12 modules of interest and to discover crit-

ical genes which may mediate communication between immune cells in response to WNV (Table 3). The 12 modules show dramatic changes

over time or with disease severity and we wanted to knowwhich ligands and pathways could be driving those changes and targeting genes in

those modules. With data at a population level, we identified a particularly prominent role for IL-1b from CD14+ monocytes as the top ligand

mediating interactions between multiple cells including an autocrine interaction from module 1 targeting CCL7 in CD14+ monocytes; and

paracrine interactions fromCD14+monocytes to target IL1R1 inmodule 4 of cDCs as well as CD83 inmodule 2 of CD16+monocytes. A critical

role for IL-1b has been noted previously in distinguishing severity of WNV infection28 and in control of WNV in the brain.29 This analysis also

identified TNF expressed by CD16+monocytes as the top ligand for autocrine signaling to target CSF1R and AHR inmodules 1 and 3, respec-

tively. The top ligand produced by CD8+ T cells, INFg, was found tomultiply target JUNB in bothmodule 2 of CD4+ T cells and in module 1 of

pDCs as well as IRF8 in module 6 of plasma B cells, all of which are associated with disease severity.

Ligand-target interactions were also inferred in chains or inter-cellular cascades, i,e., NFkb1 in module 3 of CD8+ T cells, which is enriched

in NFkb signaling as mentioned previously, is a target of OSM (oncostatin M), the top ligand of CD14+ monocytes. OSM is an interleukin-6

family cytokine63,64 and module 1 of cDCs serves as a target of IL-15 from CD16+ monocytes. OSM was reported to be elevated during acute

human anaphylaxis together with S100A8/A9,65 two of the top three genes in module 1 of cDCs. Thus, we identified potentially important

interacting factors that are highly relevant to anti-viral responses.
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Circulating soluble factors show proteins and metabolites affected by infection with WNV

To investigate the systemicmilieu of the cellular immune responses and to determinewhich circulating factors are relevant to severity ofWNV

infection, we quantified proteins and metabolites in the serum of our subject cohort. We employed the MStern blotting-based proteomics

platform for non-depleting profiling of the serum proteome with all high-abundance proteins remaining in the sample.66–70 We examined

longitudinally collected samples to quantify differentially abundant proteins from acute infection through convalescence and to distinguish

the severity groups ofWNV patients (Table S4). When comparing participants across time points, we identified 30 significant proteins, group-

ed into specific clusters which showed distinct patterns of enrichment over the time course and severity of WNV infection (Figure 4 p < 0.05;

one-way ANOVA). In particular, we identified several proteins associated with acute phase response and inflammatory processes including

the complement and coagulation pathways.71

Three groups of proteins featured most prominently. Symptomatic WNF and WNE patients at the acute time point showed lower abun-

dance of 3 proteins (B2M, APOA1, and APOA2; red box) relative to the levels observed in the asymptomatic participants which all equalize at

the 3 month time point. This includes beta 2-microglobulin (B2M), a component of class I major histocompatibility complexes, which is known

to be elevated in viral infections.72 A group of four proteins (C8A, FBLN1, APOD, and TDRD1; green box) demonstrated elevated levels in the

serumof both acutely infected asymptomatic andWNFpatients but were significantly lower inWNE samples (although some heterogeneity is

noted in Asymp 1 at the acute time point).

The highest number of significantly different serumproteins was a group of 12 proteins which were elevated specifically inWNE symptomatic

patients at the acute time point (IGFALS, APOE, VTN, SAA1, C9, SERPINA3, APOA4, HP, CD14, APOL1, GC, and PLG; blue box). These markers

include GC (vitamin D-binding protein); plasminogen (PLG), an acute phase reactant; and apolipoprotein A1 (APOL1) which responds to inflam-

matory cytokines and is involved in autophagy,73 and CD14, the soluble form of the monocyte surface marker which is an indicator of monocyte

activation consistentwithCyTOF profiles noted previously in symptomatic participants. Elevated sCD14 is associatedwith inflammation and viral

infections.74 Expression levels of these proteins decreased at Month 3 and further declined at the Year 1 time points. Our study also identified

elevated levels in symptomatic participants of the serum protein IGFALS, insulin-like growth factor binding protein acid-labile subunit, which

has recently been shown to facilitate ubiquitination of signaling mediators IRAK1 and TRAF6 to inhibit influenza viral replication and in addition

is a sensitive biomarker ofCOVID-19 infection.75,76 Thisproteomicprofile highlights important elements in the host response to acuteWNV infec-

tion and identifies differences between the severity groups, specifically reflecting higher systemic inflammation in symptomatic participants.

Interactions between metabolic and immune pathways are incompletely understood but are a critical element of host response. Circu-

latingmetabolites are a link that both reflect systemic conditions as well asmodulating cell states. To identifymetabolic pathways that change

in response to infection with WNV, we conducted untargeted LC-MS-based metabolomics on serum samples from our cohort. From a small

sample set (n = 11 participants, n = 22 samples), we conducted an exploratory evaluation and identified 641 metabolites across all partici-

pants. When we compared acute and Month 3 time points for all participants together, we detected differentially abundant metabolites

with 42 increased and 35 decreased (Figure 5A). In this longitudinal comparison, the biggest differences were detected in 5 glycerophopho-

lipids of which 4 were more abundant at acute infection. These metabolites include lysophosphatidylethanolamine (LPE), lysophosphatidyl-

choline (LPC), and phosphatidylethanolamine (PE), which are amphipathic lipids in lipid bilayers that play a role in immune activation (Fig-

ure 5A, C22:6 LPE, C22:5 LPC, C22:6 LPC. C38:6 PE). Elevations in LPE have previously been correlated with higher disease activity in

rheumatoid arthritis suggesting they may be important for immune activity.77 In addition, 3 members of the alpha-linolenic acid and linoleic

acid metabolism pathway were higher in acute infection and metabolites in the bile acid biosynthesis pathway showed an increased abun-

dance at Month 3 (Figure 5A).

Table 3. Top ligand-target pairs in cell-cell communication

Receiver cell type Module Target Ligand Sender cell type Activity Score

CD8+ T Cells 1 GZMA HMGB2 Proliferating T Cells 0.00860

CD14+ Monocytes 1 CCL7 IL1b CD14+ Monocytes 0.00860

cDCs 1 OSM IL15 CD16+ Monocytes 0.00748

cDCs 4 IL1R1 IL1b CD14+ Monocytes 0.00695

CD16+ Monocytes 1 CSF1R TNF CD16+ Monocytes 0.00686

Plasma B Cells 6 IRF8 IFNg CD8+ T Cells 0.00683

NK Cells 3 GADD45B IL18 cDCs 0.00644

CD16+ Monocytes 2 CD83 IL1b CD14+ Monocytes 0.00620

CD16+ Monocytes 3 AHR TNF CD16+ Monocytes 0.00585

CD4+ T Cells 2 JUNB IFNg CD8+ T Cells 0.00569

pDCs 1 JUNB IFNg CD8+ T Cells 0.00569

CD8+ T Cells 3 NFKB1 OSM CD14+ Monocytes 0.00265

The top ligand-target pairs were inferred by NicheNet analysis with the highest activity score for the 12 differential modules in Table 2. Each top ligand shows the

highest expression in the ‘sender’ cell type shown.
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We also comparedmetabolic profiles between samples from asymptomatic participants (n = 8) and symptomatic patients (n = 14) to high-

light any changes associated with clinical severity. When we compared subject groups, we detected distinct patterns of differentially

abundant metabolites with 35 increased and 70 decreasedmetabolites in symptomatic compared to asymptomatic participants. WNV symp-

tomatic participants exhibited the highest increase in triacylglycerols (C46:3 TAG, C46; 2 TAG, C44:1 TAG, C44:2 TAG), while asymptomatic

participants showed an increase abundance of histidine, pyrimidine, and tyrosine metabolites (Figure 5B). A higher abundance of histidine in

asymptomatic participants is consistent with previous reports of an anti-inflammatory effect.77

Integrative analysis by multi-omics factor analysis (MOFA)

Each of the multi-dimensional profiling platforms (cellular, transcriptional, proteomic, and metabolomic profiling) identified distinct factors

that exhibit significant associations with the time points and disease groups and whichmay contribute to efficacy of responses and severity of

WNV infection. A key question is whether individual elements, which alonemay provide limited specificity or biological insight, may be highly

correlated across platforms and interact together to drive the immune response. Thus, considering features derived from the combined sys-

tems analysis may identify signatures critical to clinical outcome. For more insight into immune components, we integrated the data from all

the assay platforms using a joint dimension reduction withmulti-omics factor analysis (MOFA) based on features from our four different assays

(CyTOF, Seq-Well, proteomics and metabolomics).78,79 MOFA identified 7 multi-omic factors (maximum number of factors suggested by

MOFA) which explain 46.4% of the variance averaged over assays. For each factor, we performed two-way ANOVA analysis and assessed

whether infection time point and disease severity explain additional variation in the MOFA factor scores across participants (Table S5). We

focus on MOFA factor 1 which demonstrated the most significant difference across time points (p value 7.90E-07, adjusted p value 5.50E-

06) and MOFA Factor 5 (p value 2.20E-02, adjusted p value 1.60E-01) with the strongest difference distinguishing between the multiple

severity groups.

We found MOFA factor 1 was significantly associated with the time points. MOFA factor 1 was highest at the acute time point and

decreased over time in the convalescent samples (Figure 6A, p value of 7.9E-07, adjusted p value of 5.5E-5). The top features of MOFA factor

1 are from CyTOF and Seq-Well and include 17 cell type frequencies and 109 cell type functional marker combinations from CyTOF, 10 pro-

teins, 15 metabolites, and 1,464 genes (Table S6). MOFA factor 1 expression level represents a state with elevated frequencies of activated

CD8+ andCD4+ T cells as well as lower levels of NK cells, Tregs, andDCs. Increased frequency of CD8+ T cells and decreased frequency of NK

cells at the acute time point was also identified when analyzing the cell frequencies directly (Figure 1). Functional markers identified in MOFA

factor 1 and elevated at the acute time point include the leukocyte adhesion marker CD62L (L-selectin) on monocytes, DCs, NKs, CD4+, and

CD8+ T cells; elevated expression of IFNg in DCs, B cells, and CD8+ T cells; elevated immune regulator CD279 on granulocytes and T and B

cells; elevated chemokine receptors CCR4 onmonocytes and CD8+ T cells and CCR7 on CD4+ and CD8+ T cells. MOFA factor 1 also included

lower expression of checkpoint inhibitor CD152 on CD4+ T cells and NK cells. The most significant protein signature in MOFA factor 1 was

complement and coagulation cascades (WikiPathway 3.66e-04). MOFA factor 1 includes serum proteins PROS1, involved in coagulation and

Figure 4. Plasma proteomics investigation in WNV infection

Serum proteins were assessed using MStern blotting followed by a highly multiplexed targeted MRM LC-MS experiment.

(A–D) (A) Hierarchical clustering-based heatmap showing the significant proteins (ANOVA; p < 0.05) based on the disease severity across the different time

points. Protein groups of interest are indicated by green, blue and red boxes. Box/whisker plots of the z-scores across all proteins and participants indicated

by the green (B), blue (C) and red (D) boxes. See also Table S4.
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clearance of apoptotic cells as a ligand for receptor tyrosine kinases TAM receptors (Tyro3, Axl, and Mer)80 and APOA4, APOL1, which have

primary roles in lipid transfer as well as immune-responsive role in autophagy, and SERPING1 which acts to inhibits the complement cascade.

Among the metabolomic profiles, MOFA factor 1 identified decreased abundance at acute infection of enriched metabolites in the steroid

biosynthesis pathway and spermidine pathway, ribothymidine andmethylthioadenosine, reported to have anti-apoptotic effects,81 andC34:2

PC plasmalogen, C36:1 PE plasmalogen, membrane lipids associated with immune signaling and protective against reactive oxygen

species.82

In particular, B cell receptor (BCR) signaling was found to be the top enriched pathway among the 1,464 genes for MOFA factor 1

(WikiPathway, 2.01e-05), although our module-based Seq-Well analysis did not identify a B cell module. Notably, in CyTOF, the frequency

of memory B cells was significantly elevated at the acute time point for all participants (Figure 1B, p < 0.01). These results highlight importance

of B cells in early responses to infection with WNV. Since the MOFA analysis is based on global average gene expression across all cells

regardless of cell types, we sought to determine whether the B cell signaling identified in MOFA factor 1 was due to changes in cell frequency

or reflected activation within the B cell population. Therefore, we re-examined genes in the Seq-Well data related to BCR signaling (134 BCR

signaling genes identified by two databases (WikiPathway (n = 97) and KEGG (n = 81) including 44 shared genes) to investigate whether there

was differential gene expression within the B cell populations. We examined expression for the 22 genes in the BCR signaling pathway

included in MOFA factor 1, comparing B cells in the 18 pairs of severity states and time points. Strikingly, we found differential expression

for 21 of 22 genes in at least one condition (p value <0.01, Wilcoxon rank-sum test) and highly significant differential expression for 16 of

22 (p value <0.001). Particularly interesting are 3 genes elevated in the acute samples that are significant across time and severity groups (Fig-

ure 6B): RAPGEF1, a guanine nucleotide exchange factor involved in signal transmission and lineage-specific differentiation83; LYN and REL,

activating src family tyrosine kinases. In contrast, PPP3CA, a calcineurin protein which activates T cells, showed higher expression during

convalescence, particularly in the symptomatic cases reflecting their higher inflammatory status. For a subset of samples with sufficient

cell numbers to support a separate analysis, we identified significant differences within plasma B cells specifically and similarly found lower

expression at the acute time point for expression of HCLS1 and PPP3CA (p value <0.01) consistent with expected kinetics of plasma cells in

early response and the differential levels for B cell subsets.

We found a significant severity-related effect in MOFA factor 5 (Figure 6C, factor 5, ANOVA p value of 2.3E-2, adjusted p value 0.16) with

asymptomatic participants having higher expression of MOFA factor 5. In addition, MOFA factor 5 also showed a difference across time

points (3.90E-3, adjusted p value 2.30E-02). Further, the trajectory of paired MOFA factor 5 scores for each individual, calculated as the dif-

ference between levels at acute and 3 month time points, were significantly different between severity groups, with the symptomatic group

increasing compared to asymptomatic groups (Figure 6D p value of 1.7E-3, adjusted p value of 1.2E-2; Wilcoxon rank-sum test). The top fea-

tures of MOFA factor 5 are balanced between CyTOF, Seq-well, and proteomics and include 2 cell type frequencies and 4 functional marker

combinations fromCyTOF, 14 proteins, 14metabolites, and 744 genes (Table S7). Asymptomatic participants had higher expression ofMOFA

factor 5 at the acute time point which represents an immune state of lower frequency of total B cells, and lower pro-inflammatory signaling

pathways including reduced TGFb in CD8+ T cells, pSTAT1 in mDCs, and pSTAT5 in CD4+ T cells. Serum proteins with elevated levels in

MOFA factor 5 include components of the complement and coagulation cascades, e.g., complement protein C1S, Alpha2-HS glycoprotein

(AHSG), involved in endocytosis and previously associated with severity in a murine model of WNV.84 MOFA factor 5 includes reduced levels

of complement protein C1QB and APOC3 which has a primary role in triglyceride transport but may also be relevant in inflammation as a

Figure 5. Differentially abundant metabolites in WNV infection

Serum metabolites were assessed using LC-MS, median normalized and log transformed.

(A and B) Differentially abundant metabolites (DAMs) are shown in volcano plots comparing (A) time point (Month 3 vs. Day 1) for all subjects at and (B) symptom

severity (symptomatic n = 7 vs. asymptomatic n = 4). Colored points represent DAMs with absolute value of fold change (FC) R1.2, p value <0.05 (one-way

ANOVA), and FDR (Storey’s q-value) < 0.2 (A) or <0.05 (B).
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competitor of anti-inflammatory apoE.85,86 Metabolites identified in MOFA factor 5 were propanoate metabolism which is important in mito-

chondrial energy metabolism,87 and alpha-hydroxybutyrate, an alternate energy source and regulator of cellular signaling.88 MOFA factor 5

transcriptional features were highly enriched in mRNA processing (WikiPathway 1.8e-05).

DISCUSSION

WNV infection can be severe or fatal for only a minority of individuals. In this study, we for the first time employed a longitudinal multi-omic

approach beginning with acute infection to define early cellular and molecular signatures corresponding to severe WNV infection. Although

the sample size is small, insights we gained from defining effective immune responses may inform future investigation of specific cellular

mechanisms and preventative and therapeutic approaches to mitigate severe WNV in susceptible people. We took advantage of an unusual

population of acutely infected but asymptomatic individuals and interrogated immune responses to identify individual variations that may

contribute to infection severity. We applied powerful single-cell approaches to interrogate immune responses at acute infection and through

convalescence. Following multiple measures over time from the same study participants reduces variation in our assays and supports devel-

opment of the trajectory of infection response. Through an integrated analysis comparingmultiple immune components in asymptomatic and

symptomatic cases, we defined elements characterizing different clinical outcomes.

An unexpected finding from our study is the similarity of responses in the study participants. Across severity groups, we detected signif-

icant alterations in cell frequencies and functions, transcriptional, proteomic, andmetabolomic pathways, reflecting thatWNV is a potent virus

which evokes strong immune responses. We have previously quantified antibody responses to WNV proteins (envelope and non-structural

proteins 1 and 5) and assessed humoral response to WNV on a single-cell and repertoire level and shown no significant differences between

groups whether they experienced asymptomatic or severe infection.33,89 Changes in cell frequencies—such as elevated innate immune PMN

and monocytes at acute infection, and the expansion of effector CD4+ (Temra) cells at Month 3 and Year 1—were similar across severity

Figure 6. Multi-Omics Factor Analysis (MOFA)

Data from all the assay platforms were integrated using a joint dimension reduction with Multi-Omics Factor Analysis (MOFA).

(A) Box/whisker plots for MOFA factor 1 across time and severity groups. A two-way ANOVA test suggests a strong difference in Factor 1 (p = 8E-07) after

accounting for across disease group variability.

(B) Expression of BCR signaling genes in B cell subsets across time points and severity groups. The triangles and circles represent median values as in Figure 3C.

(C) Box/whisker plot across time and severity groups for MOFA factor 5. A two-way ANOVA test suggests mild differences in Factor 5 (p = 4E-3) across times and

across disease groups (p = 2E-2). A Wilcoxon rank-sum test suggests that both asymptomatic and symptomatic groups show differences at the acute time point

(p = 8E-3).

(D) Box/whisker paired-plot on changes between T1 and T2 for different participants. A Wilcoxon rank-sum test suggests that asymptomatic and symptomatic

groups show differences regarding the trajectory from T1 to T2 (p = 1E-3). See also Tables S5–S7.
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groups. We showed differences, however, in cellular functional responses with relatively elevated levels of inflammatory cytokines (TNF, IL-8,

and IFNg) and signaling mediators (phospho STAT3 and phospho STAT5) in the group with severe WNV infection. The elevated levels of

activated CD8+ T cells at Day 1 are expected in symptomatic participants given the important role for activated CD8+ T cells in response

to viral infections, related to their recognized functional activities in viral killing and clearance and production of inflammatory mediators.

However, our data reveal comparable increased frequencies in asymptomatic donors whichmight not have been predictedgiven the absence

of clinical symptoms. In transcriptional responses, similarly, all participants demonstrated elevated transcription of cDC, CD8+ T cell, and

CD14+ monocyte gene signatures at acute infection which declined by Month 3 and Year 1. The slight differences in cell type frequencies

between the CyTOF and Seq-Well platforms, or between transcriptional and proteomic measurements, may be due to mRNAs which are

not transcribed, or protein markers which may be undetectable or shed or secreted on activation, or to differences in whole blood vs.

PBMC samples. We also identified particularly notable differences in gene modules in non-classical CD16+ monocytes of asymptomatic

participants, a subset specialized for wound healing and anti-viral responses.90 In particular, the IFN response is a very important element

of anti-viral activity and higher expression of these genes in asymptomatic participants suggests the early expression of these pathways

may control infection effectively. In addition, those features of the asymptomatic response to acute infection would be expected to increase

viral clearance and overall lower the degree of inflammation in asymptomatic donors. Through a ligand-target analysis of cell-type and state

based on average signals of individuals, we identified markers of interest enriched during infection and in different disease trajectories to

ground generated gene-sets in known cellular interactions.

Webroadenedour examinationof immunitybyprofiling serumproteins andmetabolites, identifying significantdifferences longitudinally inall

study participants as well as specific components that distinguish severity groups. In particular, these analyses, while limitedby sample size, high-

lighted elevated serum levels in more severely ill WNV participants of acute phase reactants and inflammatory processes including the comple-

ment and coagulation pathways,71 and that serum levels of some proteins remained elevated over 3 months, consistent with other clinical

observations.91Notably, insulin-likegrowth factor bindingprotein acid-labile subunit (IGFALS)was also higher inmore severely illWNVstudy par-

ticipants which may reflect its role inhibiting viral infection.75,76 Asymptomatic participants had elevated levels of complement and coagulation,

and elevated levels of themetabolic pathways enhancing energy production. These elevated proteins are consistent with acute serumproteome

responses in Lymedisease, another arthropod-borne infection, althoughmicrobiologically distinct and transmittedbyadifferent vector, suggest-

ing similar immune activation.70 Regulation of those proteins may be beneficial or predictive of an improved clinical trajectory. Considering the

importance of cytokines in immune response andgiven our transcriptomics data, wenote that there are 8 cytokines with both protein abundance

andgeneexpressiondata (HSPB1, ICAM1, IGHD, ITIH4, LBP,PF4, PPBP,andVCAM1)andthat theirprotein-genecorrelation isgenerallypoorwith

Pearson correlations between 0.245 (ITIH4) and 0.286 (HSPB1). Many cytokines of immune response have local action, so may not be seen in the

blood. In addition, they have such low concentrations in the blood (e.g., interferons) that they are not detected on typical proteomics platforms.

There is alsoadetection limitwithbulkproteomics compared tosingle-cell transcriptomics. Ingeneral, there is little correlationbetweengeneand

protein levels in complex systems due to either post-transcriptional or post-translation regulation.92

With respect to serum metabolites, all groups at acute infection showed elevated levels of glycerophospholipid, which is associated with

immune activation and has recently been associated with inflammatory responses to influenza vaccination.93 Elevations at Month 3 may indi-

cate a trajectory toward resolution of inflammation because bile acids have a regulatory role in inhibiting inflammasome activation.94 Further-

more,wedetectedan increasedabundanceof anti-inflammatory histidinemetabolites in asymptomatic individuals. Thesedifferences suggest

increased regulation of metabolic pathways in asymptomatic participants during acuteWNV infection which may contribute to the improved

clinical trajectory. This is consistentwith cell functionalmarkers and transcriptional targets, showingelevated levels of inflammatorypathways in

each omics platform in symptomatic participants is likely relevant for disease severity. Understanding the milieu of immune cells enriches our

understanding of the response to infection and provides additional evidence of inflammatory differences distinguishing severity groups.

With this data resource as input, we applied multi-omics factor analysis (MOFA) to generate salient hybrid features derived from the com-

bined systems analyses. With the integrated data from all the assay platforms, several distinct findings emerged. As noted in each individual

assay platform, there were many elements of response to WNV infection which were shared by all severity groups. Despite engagement of

these responses, individuals show highly divergent clinical outcomes. The coordinated elements identified via integratedMOFAmulti-omics

modeling providemechanistic insight andmay identify signatures critical to clinical outcome. Specifically, MOFA factor 1 identified significant

elements associatedwith the time course trajectory of infectionwith a focus on B cells that correlates with cell frequency data and is consistent

with higher gene expression levels at the acute time point, supported by the gene set enrichment of BCR signaling. This response may be

critical, with early activity of B cells having an important protective role in infections in both asymptomatic and symptomatic subjects. Studies

in themousemodel showed that B cells were essential for resistance toWNV infection.95We have previously shown that antibody levels exam-

ined in convalescence were not significantly different between asymptomatic and severely ill participants and did not predict clinical

severity,33,89 and we similarly found strong anti-WNV E responses by immunoblot from all participants in the current study. Thus the impor-

tance of the B cell transcriptional signatures as identified in the MOFA analysis may be related to other B cell roles and interactions besides

secretion of antibody.

Through our analysis we determined that effective immune responses in asymptomatic donors include an activated immune status

involving cell types and pathways that initially controlled pro-inflammatory innate immune cell activation and elevated numbers of Tregs

noted in MOFA factor 1. This observation is consistent with previous measures of Tregs in infection with WNV in studies restricted to symp-

tomatic participants.30 OurMOFA analysis identifies an immune state combiningmultiple immune components and suggests that less severe

WNV infection is associated with a combined immune state of reduced proinflammatory activity and elevated levels of B2m, ApoA1, Apo A2
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proteins. While very few individual features independently can distinguish disease severity groups, especially in a small cohort, with the com-

bined activity of many potentially small contributions of several immune components, MOFA identifies an immune state whose joint effect is

more significant for separating the disease cohorts. In addition, the key cellular immune responses andmetabolic pathways of MOFA factor 5

identify a constellation of critical immune elements which contribute to successful responses. The significance of opposite trajectories of

MOFA factor 5 between severity groups from acute to Month 3 time points suggests that the different immune profiles evident between clin-

ical groups during acute infection may drive different trajectories for clinical outcome.

Our study cohort is limited by enrollment size which is dependent on variations in infection frequency at our recruitment site (Houston, TX)

and was conducted during disruptive seasons which included Hurricane Harvey as well as the COVID-19 pandemic. Focusing only on WNV-

exposed individuals allows us to assess the determinants of different responses to the virus. Healthy uninfected individuals, while easier to

recruit, are not appropriate controls for this study, as their anti-WNV efficiency is undefined prior to infection. Although WNV infections

are typically asymptomatic,33 it is unknown how individual uninfected controls would respond to infection, making such a group incompatible

with our goal of defining molecular characteristics that differentiate asymptomatic and symptomatic infection responses. Our inclusion of a

convalescent time point at Year 1 served as a proxy to healthy conditions. Beyond the distinct immune elements identified here, additional

factors and mechanistic conclusions may be revealed in a study using a larger cohort and where participant sex could be considered, mild

fever and severe neurologic subjects could be distinguished, and detailed medication history could be collected from asymptomatic partic-

ipants. In addition, WNV is a vector-mediated infection, and our study does not specifically examine the impact of mosquito salivary compo-

nents. The host immune response to the vector has recently been highlighted as contributing to resistance in some tick-borne infections96 and

shows promising protection with anti-mosquito vaccine or interventions directed at viral proteins such as non-structural (NS)-1.97

Our approach, including a longitudinal stratified profiling plan and MOFA analysis, offers a data resource of acute human viral infection

and a model for multifactorial immune inquiry. Through this in-depth profile, we uncovered distinctions between patients who have very dra-

matic differences in clinical outcome. Medicine is developing a rich understanding of cellular immune pathways and how they may be lever-

aged for clinical advantage. With an additional understanding of the proteomic and metabolomic datasets, the profiles provide potentially

actionable biomarkers for vulnerable individuals. Beyond prognosis, defining measurable differences in immune response between disease

trajectories in a larger subject cohort can inform targeted approaches to prevent and/or treat WNV infection, including selective

immunomodulation.

The observation of the combined immune state with joint molecular effects could not be addressed in previous studies examining only

severely infected patients or from profiles of convalescent cohorts enrolled after recovery from infection.30,31,98 Although stratified by disease

severity, they were evaluated after recovery from acute illness when differences in initiation of B cell responses were not evident.33,89 The

mechanisms identified here in profiles of asymptomatic study participants may be useful for understanding mechanisms of pathogenesis

for other viral infections as well, particularly for related flaviviruses such as Zika and dengue viruses.39,99,100 Finally, considering the fact

that there is no WNV vaccine for humans,101,102 our study using systems immunology approaches may have an implication for WNV vaccine

development too. In particular, our single-cell immune profiling and gene modules could contribute to vaccine design by inferring cell type-

specific susceptibility to infection.103

Limitations of the study

First, the cohort size of our study was small as it depends on infection frequency and was conducted during disruptive seasons which included

Hurricane Harvey as well as the COVID-19 pandemic. Second,WNV being a vector-mediated infection, immunity to themosquito vector may

play a role which our study did not examine. Third, our study did not address the recent finding that auto-antibodies neutralizing IFN-a and/or

IFN-u were found with greater frequency in patients with severe WNV infection.18,19 Finally, our enrollment criteria provide limited related

health information for the participants, especially the asymptomatic donors.

STAR+METHODS

Detailed methods are provided in the online version of this paper and include the following:

d KEY RESOURCES TABLE

d RESOURCE AVAILABILITY

B Lead contact

B Materials availability

B Data and code availability

d EXPERIMENTAL MODEL AND STUDY PARTICIPANT DETAILS

B Human study participants and ethics statement

d METHOD DETAILS

B Sample collection and cell isolation

B Cell labeling and mass cytometry acquisition

B CyTOF data processing and analysis

B Single cell transcriptional assays

B scRNA-seq raw data processing

ll
OPEN ACCESS

iScience 26, 108387, December 15, 2023 13

iScience
Article



B scRNA-seq cell type identification

B Differential gene module discovery

B Intercellular communication predictions

B Proteomics

B Metabolomics

B Metabolomics data processing

B Multi-omics data integration

d QUANTIFICATION AND STATISTICAL ANALYSIS

SUPPLEMENTAL INFORMATION

Supplemental information can be found online at https://doi.org/10.1016/j.isci.2023.108387.

ACKNOWLEDGMENTS

This work was supported in part by awards from theNIH/NIAIDHuman Immunology Project Consortium (HIPC) grant (AI089992 to RRM,DAH,

SHK, JCL, AKS; AI118608 to BF, KKS, HS, OL), the Koch Institute Support (core) NIH Grant P30-CA14051 from the National Cancer Institute,

and theClaudeD. PepperOlder Americans IndependenceCenter from theNIH/NIA (P30AG021342) to BvW. The Precision Vaccines Program

is supported in part via the Department of Pediatrics at Boston Children’s Hospital. The authors gratefully acknowledge the valuable contri-

butions of theHIPCgroup and Yale School ofMedicine colleagues and core facilities (Yale CyTOF core and Yale Center for GenomeAnalysis),

Ms. Jeanne Ruff andMs. Allison Lino for assistance with the HoustonWest Nile Cohort, Dr. Susan N. Rossman andmembers of the Gulf Coast

Regional Blood Bank for identifying asymptomatic participants, and all the study participants. The funders had no role in study design, data

collection and analysis, decision to publish, or preparation of the manuscript.

AUTHOR CONTRIBUTIONS

Conceived and planned the study, D.A.H., S.H.K., R.R.M., and K.O.M. Performed experiments, Y.Z., I.F., X.W., H.K., C.H.C., B.F., and K.K.S.

Analyzed and visualized data, H.J.L., Y.Z., I.F., S.M., X.W., B.V.W., C.B.C., H.K., C.H.C., B.F., K.K.S., O.L., H.S., A.K.S., L.G., S.H.K., and R.R.M. All

authors contributed to writing and reviewing the manuscript. R.R.M. coordinated the contribution of all authors.

DECLARATION OF INTERESTS

A.K.S. reports compensation for consulting and/or SABmembership fromMerck, Honeycomb Biotechnologies, Cellarity, Repertoire Immune

Medicines, Ochre Bio, Third Rock Ventures, Hovione, Relation Therapeutics, FL82, and Dahlia Biosciences. J.C.L., A.K.S. and the Massachu-

setts Institute of Technology have filed patents related to the single-cell sequencing methods used in this work. J.C.L. has interests in Sun-

flower Therapeutics PBC, Honeycomb Biotechnologies, OneCyte Biotechnologies, Alloy Therapeutics, QuantumCyte, and Repligen. J.C.L.’s

interests are reviewed and managed under Massachusetts Institute of Technology’s policies for potential conflicts of interest. R.J.X. is a co-

founder of Celsius Therapeutics and Jnana Therapeutics. S.H.K. receives consulting fees from Peraton.

INCLUSION AND DIVERSITY

We support inclusive, diverse, and equitable conduct of research.

Received: May 30, 2023

Revised: October 4, 2023

Accepted: October 27, 2023

Published: November 2, 2023

REFERENCES
1. Bai, F., Thompson, E.A., Vig, P.J.S., and Leis,

A.A. (2019). Current Understanding of West
Nile Virus Clinical Manifestations, Immune
Responses, Neuroinvasion, and
Immunotherapeutic Implications.
Pathogens 8, 193. https://doi.org/10.3390/
pathogens8040193.

2. Ronca, S.E., Ruff, J.C., and Murray, K.O.
(2021). A 20-year historical review of West
Nile virus since its initial emergence inNorth
America: Has West Nile virus become a
neglected tropical disease? PLoS Negl.
Trop. Dis. 15, e0009190. https://doi.org/10.
1371/journal.pntd.0009190.

3. Hadfield, J., Brito, A.F., Swetnam, D.M.,
Vogels, C.B.F., Tokarz, R.E., Andersen,
K.G., Smith, R.C., Bedford, T., and
Grubaugh, N.D. (2019). Twenty
years of West Nile virus spread and
evolution in the Americas visualized by
Nextstrain. PLoS Pathog. 15, e1008042.
https://doi.org/10.1371/journal.ppat.
1008042.

4. Petersen, L.R. (2019). Epidemiology of West
Nile Virus in the United States: Implications
for Arbovirology and Public Health. J. Med.
Entomol. 56, 1456–1462. https://doi.org/10.
1093/jme/tjz085.

5. Centers for Disease Control and Prevention,
C.D.C (2020). West Nile Virus, Final
Cumulative Maps & Data for 1999–2019.
https://www.cdc.gov/westnile/statsMaps/
cumMapsData.html.

6. Ronca, S.E., Murray, K.O., and Nolan, M.S.
(2019). Cumulative Incidence of West Nile
Virus Infection, Continental United States,
1999-2016. Emerg. Infect. Dis. 25, 325–327.
https://doi.org/10.3201/eid2502.180765.

7. Suthar, M.S., and Pulendran, B. (2014).
Systems analysis ofWest Nile virus infection.
Curr. Opin. Virol. 6, 70–75. https://doi.org/
10.1016/j.coviro.2014.04.010.

ll
OPEN ACCESS

14 iScience 26, 108387, December 15, 2023

iScience
Article

https://doi.org/10.1016/j.isci.2023.108387
https://doi.org/10.3390/pathogens8040193
https://doi.org/10.3390/pathogens8040193
https://doi.org/10.1371/journal.pntd.0009190
https://doi.org/10.1371/journal.pntd.0009190
https://doi.org/10.1371/journal.ppat.1008042
https://doi.org/10.1371/journal.ppat.1008042
https://doi.org/10.1093/jme/tjz085
https://doi.org/10.1093/jme/tjz085
https://www.cdc.gov/westnile/statsMaps/cumMapsData.html
https://www.cdc.gov/westnile/statsMaps/cumMapsData.html
https://doi.org/10.3201/eid2502.180765
https://doi.org/10.1016/j.coviro.2014.04.010
https://doi.org/10.1016/j.coviro.2014.04.010


8. Montgomery, R.R., and Murray, K.O. (2015).
Risk factors for West Nile virus Infection and
disease in populations and individuals.
Expert Rev. Anti. Infect. Ther. 13, 317–325.

9. Loeb, M., Eskandarian, S., Rupp, M.,
Fishman, N., Gasink, L., Patterson, J.,
Bramson, J., Hudson, T.J., and Lemire, M.
(2011). Genetic variants and susceptibility to
neurological complications following West
Nile virus infection. J. Infect. Dis. 204,
1031–1037.

10. Bigham, A.W., Buckingham, K.J., Husain, S.,
Emond, M.J., Bofferding, K.M.,
Gildersleeve, H., Rutherford, A., Astakhova,
N.M., Perelygin, A.A., Busch, M.P., et al.
(2011). Host genetic risk factors for West
Nile virus infection and disease progression.
PLoS One 6, e24745.

11. Cahill, M.E., Loeb, M., DeWan, A.T., and
Montgomery, R.R. (2020). In-depth analysis
of Genetic Variation Associated with Severe
West Nile Viral Disease. Vaccines 8, 744.
https://doi.org/10.3390/vaccines8040744.

12. Suthar, M.S., Diamond, M.S., and Gale, M.,
Jr. (2013). West Nile virus infection and
immunity. Nature reviews 11, 115–128.
https://doi.org/10.1038/nrmicro2950.

13. van Tol, S., Atkins, C., Bharaj, P., Johnson,
K.N., Hage, A., Freiberg, A.N., and
Rajsbaum, R. (2020). VAMP8 Contributes to
the TRIM6-Mediated Type I Interferon
Antiviral Response during West Nile Virus
Infection. J. Virol. 94, e01454-19. https://doi.
org/10.1128/JVI.01454-19.

14. Luo, H., Winkelmann, E.R., Zhu, S., Ru, W.,
Mays, E., Silvas, J.A., Vollmer, L.L., Gao, J.,
Peng, B.H., Bopp, N.E., et al. (2018). Peli1
facilitates virus replication and promotes
neuroinflammation during West Nile virus
infection. J. Clin. Invest. 128, 4980–4991.
https://doi.org/10.1172/JCI99902.

15. Suthar, M.S., Brassil, M.M., Blahnik, G.,
McMillan, A., Ramos, H.J., Proll, S.C., Belisle,
S.E., Katze, M.G., and Gale, M., Jr. (2013). A
systems biology approach reveals that
tissue tropism toWest Nile virus is regulated
by antiviral genes and innate immune
cellular processes. PLoS Pathog. 9,
e1003168. https://doi.org/10.1371/journal.
ppat.1003168.

16. Graham, J.B., Swarts, J.L., Thomas, S., Voss,
K.M., Sekine, A., Green, R., Ireton, R.C.,
Gale, M., and Lund, J.M. (2019). Immune
Correlates of Protection From West Nile
Virus Neuroinvasion and Disease. J. Infect.
Dis. 219, 1162–1171. https://doi.org/10.
1093/infdis/jiy623.

17. Stone, A.E.L., Green, R., Wilkins, C.,
Hemann, E.A., and Gale, M., Jr. (2019). RIG-
I-like receptors direct inflammatory
macrophage polarization against West Nile
virus infection. Nat. Commun. 10, 3649.
https://doi.org/10.1038/s41467-019-
11250-5.

18. Gervais, A., Rovida, F., Avanzini, M.A.,
Croce, S., Marchal, A., Lin, S.-C., Ferrari, A.,
Thorball, C.W., Constant, O., Le Voyer, T.,
et al. (2023). Autoantibodies neutralizing
type I IFNs underlie West Nile virus
encephalitis in �40% of patients. J. Exp.
Med. 220, e20230661. https://doi.org/10.
1084/jem.20230661.

19. Lin, S.-C., Zhao, F.R., Janova, H., Gervais, A.,
Rucknagel, S., Murray, K.O., Casanova, J.-L.,
and Diamond, M.S. (2023). Blockade of
interferon signaling decreases gut barrier
integrity and promotes severe West Nile
virus disease. Nat. Commun. 14, 5973.

https://doi.org/10.1038/s41467-023-
41600-3.

20. Qian, F., Wang, X., Zhang, l., Lin, A., Zhao,
H., Fikrig, E., and Montgomery, R.R. (2011).
Impaired interferon signaling in dendritic
cells from older donors infected in vitro with
West Nile virus. J. Infect. Dis. 203,
1415–1424.

21. Shaw, A.C., Goldstein, D.R., and
Montgomery, R.R. (2013). Age-dependent
dysregulation of innate immunity. Nat. Rev.
Immunol. 13, 875–887.

22. Pillai, P.S., Molony, R.D., Martinod, K., Dong,
H., Pang, I.K., Tal, M.C., Solis, A.G., Bielecki,
P., Mohanty, S., Trentalange, M., et al.
(2016). Mx1 Reveals Innate Pathways to
Antiviral Resistance and Lethal Influenza
Disease. Science 352, 463–466.

23. Molony, R.D., Nguyen, J.T., Kong, Y.,
Montgomery, R.R., Shaw, A.C., and Iwasaki,
A. (2017). Aging Impairs Both Primary and
Secondary RIG-I Signaling for Interferon
Induction in Human Monocytes. Sci. Signal.
10, eaan2392. https://doi.org/10.1126/
scisignal.aan2392.

24. Molony, R.D., Malawista, A., and
Montgomery, R.R. (2018). Reduced dynamic
range of antiviral innate immune responses
in aging. Exp. Gerontol. 107, 130–135.
https://doi.org/10.1016/j.exger.2017.
08.019.

25. Goldberg, E.L., Shaw, A.C., and
Montgomery, R.R. (2020). How inflammation
blunts innate immunity in aging. In Vaccines
for the Elderly: Present and Future, B.
Weinberger, ed. (S. Karger Publishers),
pp. 1–17. https://doi.org/10.1159/
000504480.

26. Montgomery, R.R. (2017). Age-related
alterations in immune responses to West
Nile virus infection. Clin. Exp. Immunol. 187,
26–34. https://doi.org/10.1111/cei.12863.

27. Cahill, M.E., Yao, Y., Nock, D., Armstrong,
P.M., Andreadis, T.G., Diuk-Wasser, M.A.,
and Montgomery, R.R. (2017). West Nile
virus Seroprevalence, Connecticut, USA,
2000-2014. Emerg. Infect. Dis. 23, 708–710.
https://doi.org/10.3201/eid2304.161669.

28. Qian, F., Goel, G., Meng, H., Wang, X., You,
F., Devine, L., Raddassi, K., Garcia, M.N.,
Murray, K.O., Bolen, C.R., et al. (2015).
Systems immunology reveals markers of
susceptibility to West Nile virus infection.
Clin. Vaccine Immunol. 22, 6–16. https://doi.
org/10.1128/CVI.00508-14.

29. Ramos, H.J., Lanteri, M.C., Blahnik, G.,
Negash, A., Suthar, M.S., Brassil, M.M.,
Sodhi, K., Treuting, P.M., Busch, M.P.,
Norris, P.J., and Gale, M., Jr. (2012). IL-1beta
signaling promotes CNS-intrinsic immune
control of West Nile virus infection. PLoS
Pathog. 8, e1003039. https://doi.org/10.
1371/journal.ppat.1003039.

30. Lanteri, M.C., O’Brien, K.M., Purtha, W.E.,
Cameron, M.J., Lund, J.M., Owen, R.E.,
Heitman, J.W., Custer, B., Hirschkorn, D.F.,
Tobler, L.H., et al. (2009). Tregs control the
development of symptomatic West Nile
virus infection in humans and mice. J. Clin.
Invest. 119, 3266–3277.

31. Lanteri, M.C., Diamond, M.S., Law, J.P.,
Chew, G.M., Wu, S., Inglis, H.C., Wong, D.,
Busch, M.P., Norris, P.J., and Ndhlovu, L.C.
(2014). Increased frequency of Tim-3
expressing T cells is associated with
symptomatic West Nile virus infection. PLoS
One 9, e92134. https://doi.org/10.1371/
journal.pone.0092134.

32. James, E.A., Gates, T.J., LaFond, R.E.,
Yamamoto, S., Ni, C., Mai, D., Gersuk, V.H.,
O’Brien, K., Nguyen, Q.A., Zeitner, B., et al.
(2016). Neuroinvasive West Nile Infection
Elicits Elevated and Atypically Polarized T
Cell Responses That Promote a Pathogenic
Outcome. PLoS Pathog. 12, e1005375.
https://doi.org/10.1371/journal.ppat.
1005375.

33. Qian, F., Thakar, J., Yuan, X., Nolan, M.,
Murray, K.O., Lee, W.T., Wong, S.J., Meng,
H., Fikrig, E., Kleinstein, S.H., and
Montgomery, R.R. (2014). Immune markers
associated with host susceptibility to
infection withWest Nile virus. Viral Immunol.
27, 39–47.

34. Sekiguchi, D.R., Smith, S.B., Sutter, J.A.,
Goodman, N.G., Propert, K., Louzoun, Y.,
Rogers, W., and Luning Prak, E.T. (2011).
Circulating lymphocyte subsets in normal
adults are variable and can be clustered into
subgroups. Cytometry B Clin. Cytom. 80,
291–299. https://doi.org/10.1002/cyto.b.
20594.

35. Whitney, A.R., Diehn, M., Popper, S.J.,
Alizadeh, A.A., Boldrick, J.C., Relman, D.A.,
and Brown, P.O. (2003). Individuality and
variation in gene expression patterns in
human blood. Proc. Natl. Acad. Sci. USA
100, 1896–1901. https://doi.org/10.1073/
pnas.252784499.

36. Brodin, P., and Davis, M.M. (2017). Human
immune system variation. Nat. Rev.
Immunol. 17, 21–29. https://doi.org/10.
1038/nri.2016.125.

37. Murray, K.O., Baraniuk, S., Resnick, M.,
Arafat, R., Kilborn, C., Shallenberger, R.,
York, T.L., Martinez, D., Malkoff, M.,
Elgawley, N., et al. (2008). Clinical
investigation of hospitalized human cases of
West Nile virus infection in Houston, Texas,
167-174. Vector Borne Zoonotic Dis. 8,
167–174.

38. Gaudillière, B., Fragiadakis, G.K., Bruggner,
R.V., Nicolau, M., Finck, R., Tingle, M., Silva,
J., Ganio, E.A., Yeh, C.G., Maloney, W.J.,
et al. (2014). Clinical recovery from surgery
correlates with single-cell immune
signatures. Sci. Transl. Med. 6, 255ra131.
https://doi.org/10.1126/scitranslmed.
3009701.

39. Zhao, Y., Amodio, M., Vander Wyk, B.,
Gerritsen, B., Kumar, M.M., van Dijk, D.,
Moon, K., Wang, X., Malawista, A., Richards,
M.M., et al. (2020). Single cell immune
profiling of dengue virus patients reveals
intact immune responses to Zika virus with
enrichment of innate immune signatures.
PLoS Negl. Trop. Dis. 14, e0008112. https://
doi.org/10.1371/journal.pntd.0008112.

40. Finak, G., Langweiler, M., Jaimes, M., Malek,
M., Taghiyar, J., Korin, Y., Raddassi, K.,
Devine, L., Obermoser, G., Pekalski, M.L.,
et al. (2016). Standardizing Flow Cytometry
Immunophenotyping Analysis from the
Human ImmunoPhenotyping Consortium.
Sci. Rep. 6, 20686. https://doi.org/10.1038/
srep20686.

41. Bai, F., Kong, K.-F., Dai, J., Qian, F., Zhang,
L., Brown, C.R., Fikrig, E., and Montgomery,
R.R. (2010). A paradoxical role for
neutrophils in the pathogenesis ofWestNile
virus. J. Infect. Dis. 202, 1804–1812.

42. Hislop, A.D., Taylor, G.S., Sauce, D., and
Rickinson, A.B. (2007). Cellular responses to
viral infection in humans: lessons from
Epstein-Barr virus. Annu. Rev. Immunol. 25,
587–617. https://doi.org/10.1146/annurev.
immunol.25.022106.141553.

ll
OPEN ACCESS

iScience 26, 108387, December 15, 2023 15

iScience
Article

http://refhub.elsevier.com/S2589-0042(23)02464-1/sref8
http://refhub.elsevier.com/S2589-0042(23)02464-1/sref8
http://refhub.elsevier.com/S2589-0042(23)02464-1/sref8
http://refhub.elsevier.com/S2589-0042(23)02464-1/sref8
http://refhub.elsevier.com/S2589-0042(23)02464-1/sref9
http://refhub.elsevier.com/S2589-0042(23)02464-1/sref9
http://refhub.elsevier.com/S2589-0042(23)02464-1/sref9
http://refhub.elsevier.com/S2589-0042(23)02464-1/sref9
http://refhub.elsevier.com/S2589-0042(23)02464-1/sref9
http://refhub.elsevier.com/S2589-0042(23)02464-1/sref9
http://refhub.elsevier.com/S2589-0042(23)02464-1/sref9
http://refhub.elsevier.com/S2589-0042(23)02464-1/sref10
http://refhub.elsevier.com/S2589-0042(23)02464-1/sref10
http://refhub.elsevier.com/S2589-0042(23)02464-1/sref10
http://refhub.elsevier.com/S2589-0042(23)02464-1/sref10
http://refhub.elsevier.com/S2589-0042(23)02464-1/sref10
http://refhub.elsevier.com/S2589-0042(23)02464-1/sref10
http://refhub.elsevier.com/S2589-0042(23)02464-1/sref10
https://doi.org/10.3390/vaccines8040744
https://doi.org/10.1038/nrmicro2950
https://doi.org/10.1128/JVI.01454-19
https://doi.org/10.1128/JVI.01454-19
https://doi.org/10.1172/JCI99902
https://doi.org/10.1371/journal.ppat.1003168
https://doi.org/10.1371/journal.ppat.1003168
https://doi.org/10.1093/infdis/jiy623
https://doi.org/10.1093/infdis/jiy623
https://doi.org/10.1038/s41467-019-11250-5
https://doi.org/10.1038/s41467-019-11250-5
https://doi.org/10.1084/jem.20230661
https://doi.org/10.1084/jem.20230661
https://doi.org/10.1038/s41467-023-41600-3
https://doi.org/10.1038/s41467-023-41600-3
http://refhub.elsevier.com/S2589-0042(23)02464-1/sref20
http://refhub.elsevier.com/S2589-0042(23)02464-1/sref20
http://refhub.elsevier.com/S2589-0042(23)02464-1/sref20
http://refhub.elsevier.com/S2589-0042(23)02464-1/sref20
http://refhub.elsevier.com/S2589-0042(23)02464-1/sref20
http://refhub.elsevier.com/S2589-0042(23)02464-1/sref20
http://refhub.elsevier.com/S2589-0042(23)02464-1/sref21
http://refhub.elsevier.com/S2589-0042(23)02464-1/sref21
http://refhub.elsevier.com/S2589-0042(23)02464-1/sref21
http://refhub.elsevier.com/S2589-0042(23)02464-1/sref21
http://refhub.elsevier.com/S2589-0042(23)02464-1/sref22
http://refhub.elsevier.com/S2589-0042(23)02464-1/sref22
http://refhub.elsevier.com/S2589-0042(23)02464-1/sref22
http://refhub.elsevier.com/S2589-0042(23)02464-1/sref22
http://refhub.elsevier.com/S2589-0042(23)02464-1/sref22
http://refhub.elsevier.com/S2589-0042(23)02464-1/sref22
https://doi.org/10.1126/scisignal.aan2392
https://doi.org/10.1126/scisignal.aan2392
https://doi.org/10.1016/j.exger.2017.08.019
https://doi.org/10.1016/j.exger.2017.08.019
https://doi.org/10.1159/000504480
https://doi.org/10.1159/000504480
https://doi.org/10.1111/cei.12863
https://doi.org/10.3201/eid2304.161669
https://doi.org/10.1128/CVI.00508-14
https://doi.org/10.1128/CVI.00508-14
https://doi.org/10.1371/journal.ppat.1003039
https://doi.org/10.1371/journal.ppat.1003039
http://refhub.elsevier.com/S2589-0042(23)02464-1/sref30
http://refhub.elsevier.com/S2589-0042(23)02464-1/sref30
http://refhub.elsevier.com/S2589-0042(23)02464-1/sref30
http://refhub.elsevier.com/S2589-0042(23)02464-1/sref30
http://refhub.elsevier.com/S2589-0042(23)02464-1/sref30
http://refhub.elsevier.com/S2589-0042(23)02464-1/sref30
http://refhub.elsevier.com/S2589-0042(23)02464-1/sref30
https://doi.org/10.1371/journal.pone.0092134
https://doi.org/10.1371/journal.pone.0092134
https://doi.org/10.1371/journal.ppat.1005375
https://doi.org/10.1371/journal.ppat.1005375
http://refhub.elsevier.com/S2589-0042(23)02464-1/sref33
http://refhub.elsevier.com/S2589-0042(23)02464-1/sref33
http://refhub.elsevier.com/S2589-0042(23)02464-1/sref33
http://refhub.elsevier.com/S2589-0042(23)02464-1/sref33
http://refhub.elsevier.com/S2589-0042(23)02464-1/sref33
http://refhub.elsevier.com/S2589-0042(23)02464-1/sref33
http://refhub.elsevier.com/S2589-0042(23)02464-1/sref33
https://doi.org/10.1002/cyto.b.20594
https://doi.org/10.1002/cyto.b.20594
https://doi.org/10.1073/pnas.252784499
https://doi.org/10.1073/pnas.252784499
https://doi.org/10.1038/nri.2016.125
https://doi.org/10.1038/nri.2016.125
http://refhub.elsevier.com/S2589-0042(23)02464-1/sref37
http://refhub.elsevier.com/S2589-0042(23)02464-1/sref37
http://refhub.elsevier.com/S2589-0042(23)02464-1/sref37
http://refhub.elsevier.com/S2589-0042(23)02464-1/sref37
http://refhub.elsevier.com/S2589-0042(23)02464-1/sref37
http://refhub.elsevier.com/S2589-0042(23)02464-1/sref37
http://refhub.elsevier.com/S2589-0042(23)02464-1/sref37
http://refhub.elsevier.com/S2589-0042(23)02464-1/sref37
https://doi.org/10.1126/scitranslmed.3009701
https://doi.org/10.1126/scitranslmed.3009701
https://doi.org/10.1371/journal.pntd.0008112
https://doi.org/10.1371/journal.pntd.0008112
https://doi.org/10.1038/srep20686
https://doi.org/10.1038/srep20686
http://refhub.elsevier.com/S2589-0042(23)02464-1/sref41
http://refhub.elsevier.com/S2589-0042(23)02464-1/sref41
http://refhub.elsevier.com/S2589-0042(23)02464-1/sref41
http://refhub.elsevier.com/S2589-0042(23)02464-1/sref41
http://refhub.elsevier.com/S2589-0042(23)02464-1/sref41
https://doi.org/10.1146/annurev.immunol.25.022106.141553
https://doi.org/10.1146/annurev.immunol.25.022106.141553


43. Yao, Y., Strauss-Albee, D.M., Zhou, J.Q.,
Malawista, A., Garcia, M.N., Murray, K.O.,
Blish, C.A., and Montgomery, R.R. (2017).
The natural killer cell response to West Nile
virus in young and old individuals with or
without a prior history of infection. PLoS
One 12, e0172625. https://doi.org/10.1371/
journal.pone.0172625.

44. Ivetic, A., Hoskins Green, H.L., and Hart, S.J.
(2019). L-selectin: A Major Regulator of
Leukocyte Adhesion, Migration and
Signaling. Front. Immunol. 10, 1068. https://
doi.org/10.3389/fimmu.2019.01068.

45. Lam, F.W., Vijayan, K.V., and Rumbaut, R.E.
(2015). Platelets and Their Interactions with
Other Immune Cells. Compr. Physiol. 5,
1265–1280. https://doi.org/10.1002/cphy.
c140074.

46. Debili, N., Robin, C., Schiavon, V., Letestu,
R., Pflumio, F., Mitjavila-Garcia, M.T.,
Coulombel, L., and Vainchenker, W. (2001).
Different expression of CD41 on human
lymphoid and myeloid progenitors from
adults and neonates. Blood 97, 2023–2030.
https://doi.org/10.1182/blood.v97.7.2023.

47. Pauken, K.E., Godec, J., Odorizzi, P.M.,
Brown, K.E., Yates, K.B., Ngiow, S.F., Burke,
K.P., Maleri, S., Grande, S.M., Francisco,
L.M., et al. (2020). The PD-1 Pathway
Regulates Development and Function of
Memory CD8(+) T Cells following
Respiratory Viral Infection. Cell Rep. 31,
107827. https://doi.org/10.1016/j.celrep.
2020.107827.
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KEY RESOURCES TABLE

REAGENT or RESOURCE SOURCE IDENTIFIER

Antibodies

Metal-conjugated or carrier-free antibodies Fluidigm/BioLegend See Table S1.

Biological samples

Blood draws from WNV infected participants Baylor College of Medicine N/A

Veri-Cells� Lyophilized Human Control Cells BioLegend Cat#427201

Chemicals, peptides, and recombinant proteins

EQ Four Element Calibration Beads Fluidigm Product Number 201078

Critical commercial assays

MaxPar X8 labeling kits Fluidigm https://store.standardbio.com/Cytometry/

ConsumablesandReagentsCytometry/

MaxparAntibodyLabelingKits

Nextera XT DNA Library Preparation Kit Illumina #FC-131

Deposited data

The de-identified patient data of CyTOF,

Seq-Well, proteomics, and metabolomics (Year 1)

This paper ImmPort: SDY1396; https://www.immport.org/

shared/study/SDY1396

The de-identified patient data of CyTOF,

Seq-Well, proteomics, and metabolomics (Year 2)

This paper ImmPort: SDY1397; https://www.immport.org/

shared/study/SDY1397

Demo data This paper https://bitbucket.org/kleinstein/projects/

src/master/LeeZhaoFleming2023/

Software and algorithms

CyTOF� Software v7.0 Standard BioTools https://go.fluidigm.com/cytofsw/v7

Cytobank Cytobank, Inc. https://premium.cytobank.org/

Prism GraphPad Software https://www.graphpad.com

MATLAB 2021a MathWorks https://www.mathworks.com/

products/matlab.html

Drop-seq pipeline Broad Institute of MIT

and Harvard

https://github.com/broadinstitute/

Drop-seq

R software environment v3.6.1,

v4.0.3, v4.0.5, v4.1.3

The R Foundation https://www.r-project.org

R package Seurat v3.1.5 or v4.0.1 Stuart et al.50 https://satijalab.org/seurat/

R package WGCNA v1.71 Langfelder and Horvath104 https://horvath.genetics.ucla.edu/html/

CoexpressionNetwork/Rpackages/WGCNA/

R package nichenetr v1.0.0 Browaeys et al.62 https://github.com/saeyslab/nichenetr

R package MOFA2 v1.1.7 Argelaguet et al.78,79 https://www.bioconductor.org/packages/

release/bioc/html/MOFA2.html

R package lme4 Bates et al.105 https://github.com/lme4/lme4/

Enrichr Xie et al.106 https://maayanlab.cloud/Enrichr/

MetaboAnalyst version 5.0 Pang et al.107 https://www.metaboanalyst.ca

Skyline software v20.2.1 MacCoss Lab https://skyline.ms/project/home/

software/Skyline/begin.view

TraceFinder version 3.3 Thermo Fisher Scientific https://www.thermofisher.com/order/

catalog/product/OPTON-31001

(Continued on next page)
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RESOURCE AVAILABILITY

Lead contact

Further information and requests for resources and reagents should be directed to and will be fulfilled by the lead contact, Ruth R. Montgom-

ery (ruth.montgomery@yale.edu).

Materials availability

This study did not generate new unique reagents.

Data and code availability

� The de-identified patient data of CyTOF, Seq-Well, proteomics, and metabolomics supporting this study have been deposited at

ImmPort (http://www.immport.org) and are publicly available as of the date of publication. Accession numbers are listed in the key

resources table.

� All original code is available in this paper’s supplemental information and also at this Bitbucket repository, https://bitbucket.org/

kleinstein/projects/src/master/LeeZhaoFleming2023/.
� Any additional information required to reanalyze the data reported in this paper is available from the lead contact upon request.

EXPERIMENTAL MODEL AND STUDY PARTICIPANT DETAILS

Human study participants and ethics statement

This study was conducted in accordance with guidelines approved by the Human Investigations Committees of Baylor College of Medicine

and Yale School of Medicine. A total of 11 participants were untreated and enrolled and samples collected with written informed consent

approved annually by each institution. Demographics of study participants are shown in Table 1. All eligible patients infected with WNV dur-

ing the enrollment period (n = 7) were recruited at Baylor College of Medicine within seven days of symptomatic onset of mild disease (fever

only, WNF) or severe disease (invasive neurological illness such as encephalitis or meningitis, WNE) as defined by Center for Disease Control

(CDC)-defined clinical criteria of neurologic involvement with infection confirmed by RT-PCR.109 All eligible viremic asymptomatic donors dur-

ing the enrollment period (n = 4) were identified at Gulf Coast Regional Blood Center donation sites (Houston, TX) through routine screening

of blood by rapid nucleic acid test. As the threshold of WNV viremia detectable by the screening test indicates viral exposure occurred within

7 days110 and asymptomatic participants (WNA) were enrolled 2–4 days following screening, duration of infection was comparable in both

groups of participants. All participants regardless of symptoms showed antibody recognition of WNV envelope protein by immunoblot33

to support comparison of immune responses directly. Asymptomatic donors had no acute illness and took no antibiotics or nonsteroidal

anti-inflammatory drugs at the time of sampling. All enrolled participants were Caucasian. Other information such as ancestry and socioe-

nomic status was not available. Medical history was obtained at the time of enrollment. As this study specifically focuses on molecular

characterization of symptomatic and asymptomatic infection responses, we did not include healthy uninfected individuals as their anti-

WNV immune efficiency is undefined prior to infection. Due to the small cohort size, analysis of the influence or association of demographic

factors was not performed, which limits this study’s generalizability.

METHOD DETAILS

Sample collection and cell isolation

Blood samples were collected from WNV infected participants over a total period of 19 months taking advatgae of stable characteristics in

individuals34–36 with collection from each individual at enrollment (T1) and at 3-month (T2) and 1-year (T3) convalescent time points when par-

ticipants had resolved their illnesses. Blood draws at Baylor College of Medicine were collected in BD Vacutainer tubes, sodium heparin

tubes, or BD Vacutainer CPTMononuclear Cell Preparation Tubes with SodiumCitrate as an anti-coagulant (BD Biosciences, #362761).Whole

blood without anti-coagulant was collected for preparation of serum that was stored at�80�C until assay. Whole blood samples from sodium

heparin tubes were processed in SMART tubes containing Proteomic Stabilizer PROT1 fixation buffer (SMART Tube, Inc., Las Vegas, NV),

frozen on site according to the manufacturer’s instructions, and shipped frozen. Blood samples in CPT tubes were processed within 2 h of

collection according to the manufacturer’s instructions and shipped overnight for processing the next day.28 Fresh peripheral blood

Continued

REAGENT or RESOURCE SOURCE IDENTIFIER

Progenesis QI Nonlinear Dynamics https://www.nonlinear.com/progenesis/qi/

Analysis codes This paper https://bitbucket.org/kleinstein/projects/

src/master/LeeZhaoFleming2023/

Other

The Human Metabolome Database (HMDB) Wishart et al.108 https://hmdb.ca

ll
OPEN ACCESS

20 iScience 26, 108387, December 15, 2023

iScience
Article

mailto:ruth.montgomery@yale.edu
http://www.immport.org
https://bitbucket.org/kleinstein/projects/src/master/LeeZhaoFleming2023/
https://bitbucket.org/kleinstein/projects/src/master/LeeZhaoFleming2023/
https://www.nonlinear.com/progenesis/qi/
https://bitbucket.org/kleinstein/projects/src/master/LeeZhaoFleming2023/
https://bitbucket.org/kleinstein/projects/src/master/LeeZhaoFleming2023/
https://hmdb.ca


mononuclear cells (PBMCs) were collected from CPT tubes, washed twice with 90% RPMI +10% FBS, and processed fresh for transcriptomics

or cryopreserved in 10% DMSO, 90% FBS in liquid nitrogen at a concentration of 5 x 106cells/mL.

Cell labeling and mass cytometry acquisition

Cryopreserved whole blood samples were harvested from SMART tubes according to the manufacturer’s instructions for mass cytometry

(CyTOF). Samples were labeled with a uniform antibody cocktail as described previously.39,111 Metal-conjugated antibodies (Table S1) for

labeling cells were purchased from Fluidigm (Fluidigm Inc, South San Francisco, CA), or carrier-free antibodies were conjugated in house us-

ing MaxPar X8 labeling kits according to manufacturer’s instructions (Fluidigm). Briefly, cells from SMART tubes were thawed in batches and

washed with Maxpar Cell Staining Buffer (Fluidigm), incubated with surface labeling antibodies for 30 min on ice, permeabilized (BD FACS

Perm II) for labeling with intracellular antibodies for 45 min on ice. Cells were suspended overnight in iridium interchelator (125 nM; Fluidigm)

in 2% paraformaldehyde in PBS and washed 1X in PBS and 2X in H2O immediately before acquisition. A spike-in reference sample of

prelabeled Ta181-PBMC (BioLegend, Cat#427201, San Diego, CA) was added to each subject sample as a control to minimize the effects

of batch variation.112 Samples were run on Helios 2 CyTOF instrument at a flow rate of 30 mL/min and a minimum of 10,000 events was

collected in the presence of EQ Calibration beads (Fluidigm) for normalization. An average of 17,870 G 8,013 cells (mean G s.d.) from

each sample were acquired and analyzed by CyTOF.

CyTOF data processing and analysis

CyTOF FCS files were bead normalized using CyTOF Software v7.0.113 Manual gating was performed on the Cytobank platform by exclusion

of debris (Iridiumlow, DNAlow), multi-cell events (Iridiumhi, DNAhi), and doublets using the default data transformation of a hyperbolic

arcsine.39,111 Differences in frequencies of cell subsets between cohorts and time points were assessed by one-way ANOVA for multiple com-

parisons using Prism (GraphPad Software). Mean expression level of markers from spike-in reference cell data was assessed by PCA analysis

and no significant difference was found between time points and severity groups thus no batch corrections were applied (Figure S1). For the

functional status reflected by cell lineage-functionalmarker combinations, given the limited sample size, an exploratory statistical analysis was

conducted using a permutation sampling approach. Mean channel intensity (arcsine) of functional markers was compared for the 580 cell

type/marker combinations resulting in 274 combinations above a threshold of 20% expression for that marker. The fold change of mean re-

sponses for each cell type and marker was computed for symptomatic patients and asymptomatic cases. A distribution of permuted fold

changes was determined for 1000 iterations of group assignment without replacement. Associated p values were computed from the rank

of the observed fold change in the empirically constructed distribution using MATLAB 2021a.

Single cell transcriptional assays

PBMCs were washed twice in RPMI/10% FBS and residual red blood cells were lysed with 1x RBC Lysis Buffer (eBioscience, Invitrogen,

#00433357) according to the manufacturer’s instructions. Cells were processed for Seq-Well S^3 single-cell RNA-seq with second strand syn-

thesis.49,114 Cells were loaded on Seq-Well arrays at a density of 15,000 cells. Paired-end sequencing libraries were prepared from amplified

cDNA with the Nextera XT DNA sample Prep Kit (Illumina, #FC-131) according to the manufacturer’s instructions. Indexed cDNA libraries

were pooled at equimolar ratios and sequenced on an Illumina NovaSeq 6000 system. Final libraries were sequenced with a 21-50-50

read structure. Libraries prepared from fresh or cryopreserved cell libraries were consistent and data from both methods are presented.

scRNA-seq raw data processing

BCL files were demultiplexed by nine base-pair assay barcodes (one 30 and one 50 barcode per assay) and converted to FASTQs using

bcl2fastq. Paired end reads were aligned to the hg19 genome using STAR 2.7 alignment software115 via the Broad Institute dropseq_workflow

pipeline. To generate count matrices, reads were sorted on the cell level (where a 12 bp barcode corresponds to an individual cell/mRNA-

capture bead) and then sorted on the transcript level (where an 8 bp barcode corresponds to a unique transcript), yielding gene-by-cell count

matrices for each set of paired FASTQs. Low quality cells were filtered out if they had fewer than 500 total transcripts, fewer than 300 unique

mapped genes, or more than 25%mitochondrial reads. The count matrices were log-normalized (with a scale-factor of 10,000) before further

data-cleaning and downstream analysis.

scRNA-seq cell type identification

Cell types were identified by unsupervised clustering and differential expression analysis together with canonical lineage markers in an iter-

ativemanner using the Seurat R package.50 First, 3,000 highly variable geneswere selected from themergeddataset as detailed previously.116

The distribution of expression for each gene was then centered around zero, using the Seurat package ScaleData function. These standard-

ized expression values served as inputs for principal component analysis (PCA). The first n principal components (PCs) are selected to capture

75% of the variance and a k parameter for clustering was chosen as well ( 123
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

total number of cells
p

). Using the top n = 13 PCs and the chosen

k parameter (k = 130), a k-nearest neighbors’ algorithm was applied using the Seurat package. A Shared Nearest Neighbor (SNN) graph was

constructed, and clusters were established by the Seurat function, FindClusters (resolution parameter = 0.5). Clusters were visualized with the

dimension reduction technique, UniformManifold Approximation and Projection (UMAP),117 with aWilcoxon rank-sum test to determine pos-

itive gene markers for each cluster compared to all other clusters (log-fold change >0.25 and an adjusted p value <0.05). Cell type
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assignments for each cluster were assigned based on differentially expressed genes and the relative expression of 36 canonical lineage

markers (Figure S4). Every cell type was re-clustered individually using the same method. At this re-clustered level, doublets (determined

by co-expression of lineage markers) could be identified and filtered out and more refined cell types could be defined (e.g., identifying reg-

ulatory T cells within CD4+ T cells). We first identified a total of 31 cell types (Figure S4) and then focused on 11 main PBMC cell types which

largely correspond to our CyTOF data (Figure 3A): B cells, CD14+monocytes, CD16+ monocytes, CD4+ T cells, CD8+ T cells, cDCs, pDCs, NK

cells, plasma B cells, proliferating T cells, and Tregs.

Differential gene module discovery

Weused theWeightedGeneCo-expressionNetwork Analysis (WGCNA) framework51,104 to discover significant genemodules for each cell type

asdetailedpreviously.118Gene co-expressionwas consideredacross all cells at all timepoints for each cell typeandalsowithin each timepoint for

each cell type. As scRNA-seqdata are typically very noisy with large numbers of dropout events, we did not assume that gene co-expression net-

works should follow a scale-free topology to determine the soft-power threshold.We instead used a fixed soft-power threshold of 5, which gives

more consistency in terms of mean connectivity across different networks from our data. Significant modules were identified by comparing the

observed module gene dissimilarity (from the topological overlap matrix) to 10,000 randomly generated gene modules using the Wilcoxon

rank-sum test with FDR<0.05. Overall module expression was assessed by scores calculated byAddModuleScore in Seurat.We identifieddiffer-

ential modules, among those significant modules, for 18 pairs of different disease severity states and time points (i.e., all 3 severity pairs x 3 time-

pointsandall 3 timepointpairs x 3 severity states) byperforming theWilcoxon rank-sumtest and theKolmogorov-Smirnov (K-S) test fordifferential

distributions of module scores in each condition pair in question (restricted to conditions with at least 10 cells). In addition, we examined distri-

butions of fold changes between all condition pairs for each module. p-values from the Wilcoxon and K-S tests were systematically varied from

0.001 to 0.1 (from 0.001 to 0.009 by 0.001 and from 0.01 to 0.1 by 0.01) without adjustment for multiple testing at this stage. This lenient filtering

method favors identification of potentially relevant modules for subsequent analysis and biological interpretations. In this work, we deem differ-

ential modules to be those with themean p value of the two tests <0.01 and the fold change of median module scores >1.3 in any of the 18 con-

ditionpairs (TablesS2andS3).Genes ineachdifferentialmodulewere rankedbyPearsoncorrelationcoefficientsbetweengeneexpressionvalues

and module scores. For functional gene set enrichment analysis of modules, we used Enrichr.106

Intercellular communication predictions

To identify upstream ligands that affect expression patterns of the WGCNA-based differential gene modules above, we employed the

NicheNet method that integrates prior knowledge of ligand-receptor interactions, signaling networks, and gene regulatory networks

compiled from public data sources and validated usingmore than 100 microarray studies.62 We considered the 11 cell types for both receiver

and sender cells. Each differential gene module was considered as a gene group of interest in the receiver cells, i.e., a group of target genes

for ligands in the sender cells for each cell type. NicheNet identifies ‘‘active’’ ligands that significantly changes expression of module genes by

calculating ligand activity scores for ligand-target pairs. We note that active ligands are considered to be ligand genes that are expressed in

>10% of the sender cells in question. We analyzed the top 20 active ligands for each differential gene module for each cell type.

Proteomics

Sampleswere processed according to theMStern blotting protocol developed in the Steen lab.67,69 In brief, 1 mL of serum (�50 mgof proteins)

was mixed in 100 mL of urea buffer (8M urea in 50 mM ammonium bicarbonate) without depleting any high abundance proteins. Following

reduction (50mMDTT) and alkylation (250mM iodoacetamide) of the cysteine residues, 10–15 mg of proteins were loadedonto a 96-well plate

with an activated and primed hydrophobic polyvinylidene fluoride (PVDF) membrane at the bottom (Multiscreen HTS 0.45 mm Hydrophobic

High Protein Binding Membrane 96-well Filtration plate (Product No. MSIPS4510; Millipore-Sigma).67,69 Trypsinization of the proteins ad-

sorbed to themembrane was achieved by incubation with the trypsin for 2h at 37�C. Resulting tryptic peptides were eluted off themembrane

with 40% acetonitrile (ACN)/0.1% formic acid (FA). The resulting peptide mixtures were subsequently desalted using a 96-well MACROSPIN

C18 plate (TARGA, The NestGroup Inc.). The equivalent of 1 mg of peptide was analyzed using a microLC system (Nexera Mikros, Shimadzu,

Columbia, MD) equipped with SHIM-Pack MC-C18 column (5 cm length, 300 mm internal diameter, 1.9 mm particle size, Shimadzu) coupled

online to an LCMS 8060 triple quadrupolemass spectrometer (Shimadzu) operated in targeted ‘multi reactionmonitoring’ (MRM)mode using

a 10.3 min gradient (5–40% buffer B: acetonitrile with 0.1% formic acid).

The final scheduled MRMmethod monitored 1,887 transition pairs associated with 629 unique tryptic peptides and 306 proteins (i.e., 1–3

peptides per protein; 3 transition pairs per peptide). A detailed list of transitions is given in Table S4. Using Skyline software (v20.2.1), the

average peptide intensities were calculated for each protein, and the protein abundance in all samples were exported into a.csv format

file for further analysis in Prism and/or R.

Metabolomics

Serum metabolomic profiles of participant samples were measured using a combination of four LC-MS methods that measure complemen-

tary metabolite classes, as previously described93,119: two methods that measure polar metabolites, a method that measures metabolites of

intermediate polarity (e.g., fatty acids and bile acids), and a lipid profiling method. For the analysis queue in each method, participants were

randomized and longitudinal samples from each participant were randomized and analyzed as a group. A pooled QC sample for the LC-MS
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methods was created by combining aliquots from each sample. Additionally, pairs of pooled reference samples were inserted into the queue

at intervals of approximately 20 samples for QC and data standardization. Samples were prepared for each method using extraction proced-

ures that are matched for use with the chromatography conditions. Data was acquired using LC-MS systems consisting of Nexera X2 U-HPLC

systems (Shimadzu Scientific Instruments; Marlborough, MA) coupled to Q Exactive/Exactive Plus orbitrap mass spectrometers (Thermo

Fisher Scientific; Waltham, MA).

HILIC-pos (positive ionmodeMS analyses of polar metabolites), HILIC-neg (negative ionmodeMS analysis of polar metabolites), C18-neg

(negative ion mode analysis of metabolites of intermediate polarity (e.g., bile acids and free fatty acids), and C8-pos (positive ion mode anal-

ysis of polar and nonpolar lipids) LC-MS methods were carried out as previously described.93

Metabolomics data processing

Raw data were processed using TraceFinder 3.3 (Thermo Fisher Scientific; Waltham, MA) and Progenesis QI (Nonlinear Dynamics; Newcastle

upon Tyne, UK). Peak identification was conducted by matching measured retention times (RT) and mass to charge ratios (m/z) to mixtures

of reference metabolites analyzed in each batch. We matched unknown features to an internal database of >2600 compounds that have

been characterized using methods as previously described.93,119 This library contains compounds that have been confirmed by matching their

RT, m/z and MS/MS fragmentation patterns in multiple human biofluids using authentic reference standards. To annotate unknowns based on

this library, we used in-house alignment scripts to adjust the RT and m/z and match study unknowns to the compound library. No MS/MS was

generated for this study. Temporal drift wasmonitoredandnormalizedwith the intensities of featuresmeasured in oneof the doubly injectedQC

pooled reference samples using a nearest neighbor approach, where sample intensities in each pool are used to scale their closest samples. To

determine the analytical precision for eachmeasuredmetabolite,we computed coefficients of variation (CV) for annotated and unknown features

using the remainingQCpools not used for scaling temporal drifts. AverageCVvaluespermethod for annotated compoundswas 7–11%,which is

within the historical analytical. Finally, principal component analysesweregenerated and scoresplots used to identify potential outlying samples.

For computational and statistical analysis of metabolomics data, relative metabolite intensities were pre-processed, normalized, and log-

transformed. Undetectedmetabolites were imputed with half of the minimum value of that metabolite. Metabolites weremedian normalized

within samples, and intensities were scaled by multiplying by 106 and log transformed to stabilize variance. We used the R package lme4 to

fit a linear mixed-effects model with age, gender, symptoms, and time as fixed effects and participants as random effects.105 One-way

ANOVA was used to test full vs. reduced model based on F-test to evaluate p values and corrected using multiple comparisons120 to

calculate false discovery rate (FDR). Full model:� Time + Symptoms +Age +Gender + l(1|Subject). Reducedmodel in the longitudinal group

was� Symptoms+Age+Gender + (1|Subject) and in the symptoms groupwas� Time+Age+Gender + (1|Subject). Differentially abundant

metabolites (DAM) were defined by thresholds of p value <0.05 and |FC| R 1.2 and FDR) estimation was performed from a collection of p

values. We used the human metabolome database (HMDB)108 to classify metabolites into subclass or pathway.

Multi-omics data integration

Data fromall theassayplatformswere integratedusinga jointdimension reductionwithmulti-omics factor analysis (MOFA2) to constructmulti-

omicsmodules.78,79MOFA factors were derived to explain variabilities across samples for CyTOF (34 cell type proportions), per-cell type func-

tional marker expression levels (580 combinations), proteomics (265 proteins), metabolomics (578 metabolites), Seq-Well cell-type-specific

average gene expression levels (7610) and average cell-type-specific module expression levels from Seq-Well (47). The omics data were

aligned for the 28 available samples. Each factor was linked to features frommultiple omics, which allowed us to interpret their biological func-

tions using public resources for different omics: Enrichr 115 for transcriptomics and proteomics (using two databases of KEGG_2021_Human

and WikiPathway_2021_Human) and MetaboAnalyst 120 for metabolomics (using Over Representation Analysis by the hypergeometric test

with default parameters). We assessed 7 MOFA factors and tested whether their factor scores were associated with different time points or

disease states across samples. We performed an Analysis of Variance (ANOVA) test, and compared variance explained for each factor using

timepoints, diseasegroups, orboth.Wealso consideredaWilcoxon rank-sumtest comparing thepairedchanges fromacutephase tomonth3

for different diseasegroups. These changes are calculatedusing thepairedobservation for eachparticipant, i.e., the changeDi for participant i

is calculated asDi = Xi2 � Xi1, whereXi1 is the factor score at the acute phase and Xi2 is the factor score at month 3 for this participant. We then

tested whether the distribution of Di is the same for the asymptomatic group and the symptomatic group. Investigation of Di can reveal dy-

namics in immune profiles during early infections. In addition, when interpreting MOFA features, we focused on a set of top features that

meet either of the following two criteria: (1) factor-feature Pearson correlation p value <0.01 and (2) MOFA absolute weights > Q3 +

1.5*IQR, whereQ3 is the third quartile and IQR is the interquartile range. Adjustedp values remain significant aftermultiple testing correction.

QUANTIFICATION AND STATISTICAL ANALYSIS

Student’s t test and the chi-squre test were used for differences in age and sex between cohorts, respectively (Table 1). Differences in cell-type

frequencies, expression levels of proteins, abundance levels of metabolites, and MOFA factor scores between cohorts and time points were

assessed by ANOVAwith Tukey’s multiple comparisons or FDR orWilcoxon rank-sum tests (Figures 1, 4, 5, 6, and S1). Changes in mean chan-

nel intensities of CyTOF markers among cell types were tested by a generalized linear mixed model (Figures 2 and S3). A combination of

Wilcoxon rank-sum tests and Kolmogorov-Smirnov tests was used for differential gene module analysis (Figure 3B). All statistical parameters

are described in method details.
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