NMR Studies of Glu/GABA/Gln Cycling & GABA Synthesis Regulation in Rodent Cerebral Cortex

> Kevin L. Behar, Ph.D. Yale University

BACKGROUND

- Glutamate & GABA are the major excitatory & inhibitory neurotransmitters in cerebral cortex.
- Glu & GABA are synthesized from glutamine (Gln) in a "metabolic cycle" between neurons & astroglia.
- MRS findings indicate that Glu/GABA/GIn cycling is linked to brain glucose utilization & neuronal activity.

BACKGROUND

MRS findings of low brain GABA levels in patients with epilepsy, depression, panic disorder, & alcohol dependence suggests that GABA synthesis is reduced.

¹³C-labeled substrates combined with direct ¹³C MRS or indirect ¹H MRS provides a non-invasive means to assess metabolic pathway fluxes

In Vivo ¹³C MRS (7 Tesla) of Rat Cerebral Cortex during Infusion of [1,6-¹³C]Glucose

¹³C Labeling of Glu & Gln: Determination of V_{tca} & V_{cycle}

Glu & Gln ¹³C Turnover from [1,6-¹³C]Glc reflects Cortical Activity

Relationship between Neuronal CMR_{glc(ox)n} & V_{cycle(tot)} is Linear

N. Sibson et al (1998); A. Patel et al (2003)

V_{cycle(tot)} Includes Glu/Gln & GABA/Gln Cycling

- What fraction of total Glu/GABA neurorotransmitter cycling is contributed by GABA?
- What is the energetic cost of GABAergic function?

Experiment (i)

- Measure steady-state ¹³C enrichment of glu-4, gln-4 & GAB-2 from [2-¹³C]Ac during low (PB) & high (Hal) cortical activity.
- Use ¹³C-enrichment values to calculate Glu & GABA "cycling flux-to-oxidation" ratios from their steady-state equations:

Glutamate Neurons:

 $V_{glu/gln} / V_{TCA(glu)} = glu-4 / (gln-4 - glu-4)$

GABA Neurons:

 $V_{GAB/gln} / V_{TCA(GAB)} = GAB-2 / (gln-4 - GAB-2)$

Experiment (ii)

Measure time courses of ¹³C labeling of Glu-4 & -3, Gln-4 & GABA-2 from [1,6-¹³C]glucose at low (PB) & high (Hal) cortical activity.

Fit metabolic/cycling model to ¹³C enrichment time courses constrained by the flux ratios determined in the [2-¹³C]Ac experiment.

Steady State Isotopic Enrichment from [1,6-¹³C]Glc & [2-¹³C]Ac

¹³C Enrichment Timecouses of Glu, Gln & GABA from [1,6-¹³C]Glc

Energetics of GABA/GIn & Glu/GIn Cycling

Regulation of GABA synthesis involves two isoforms of Glutamic Acid Decarboxylase (GAD₆₇ & GAD₆₅)

GAD activity requires PyP.

- GAD₆₇ is mostly bound with PyP & active.
- GAD₆₅ is mostly unbound (apo) & inactive.
- GAD₆₅ >> GAD₆₇. Majority of isolated GAD apoGAD₆₅.

• What role do the GAD Isoforms play in GABA synthesis?

Functional Specialization of GAD's in GABA Metabolism

Shoghomonion and Martin, TiPS 1998

Background & Strategy

- GAD₆₇ is selectively decreased by a rise in GABA level
- GABA levels rise when the catabolic pathway is blocked by inhibition of GABA-transaminase (e.g., γ-Vinyl GABA, gabaculine)
- <u>Approach</u>: Measure GABA turnover from [1-¹³C]glucose in the absence & presence of GABA-T inhibition to raise GABA levels
- Relate change in GAD composition to the observed flux

GABA-T Inhibition leads to Reduced GAD₆₇ Protein

Basal GABA Synthesis is sensitive to GAD₆₇ level

Manor et al, Neurochem. Res.

Comparison of GABA Synthesis with Total GAD & GAD₆₇ Activity

 If GAD₆₇ mediates a major fraction of basal GABA synthesis, could GAD₆₅ play a role in activity-dependent GABA synthesis?

Experiment

 Measure [GABA] by ¹H MRS in vivo.
Block GABA catabolism with gabaculine: GABA synthesis rate = Δ[GABA] /Δtime.
Measure rates before & during seizures.

Comparison Groups: i) GVG-treated (0.5g/kg i.p., 24 hrs before) ii) Non-treated (saline-injected)

GAD Isoform Composition in GVG-treated & non-treated rats

The Change in GABA Synthesis during seizures is not Suppressed by GAD₆₇ Depletion

Conclusions (I)

The Glu/GABA/GIn cycle (V_{cycle}) is a major pathway flux comprising ~75-80% of GIn synthesis.

- ΔV_{cycle(tot)} is coupled to ΔCMR_{glc(ox)n} in ~1:1 relationship.
- The GABA/GIn cycle comprises ~22% of total (Glu + GABA) cycling flux & 16% of neuronal oxidation.

GABAergic and glutamatergic activity increase *together* & not in opposite directions.

Conclusions (II)

GAD₆₇ mediates the majority of <u>basal</u> GABA synthesis, possibly the "cytosolic" (non-vesicular) pool.

The large increase in GABA synthesis during seizures, despite GAD_{67} depletion, strongly suggests the involvement of GAD_{65} .

ACKNOWLEDGEMENTS

<u>MRC</u>: Robert Shulman Douglas Rothman Graeme Mason Robin deGraaf Fahmeed Hyder

Anant Patel Golam Chowdhury Ikuhiro Kida David Manor Nicola Sibson

<u>Collaborators:</u> Ognen Petroff (Yale) Michael Schwartz (Yale) John Krystal (Yale) David Martin (Wadsworth Center) Jeffrey Rothstein (Johns Hopkins) Jehuda Sepkuty (Johns Hopkins) <u>Funding</u>: NINDS NIDDK NARSAD