# A proteomics approach to understanding nicotine-dependent intracellular signaling

Marina Picciotto
Department of Psychiatry
Yale University School of Medicine



#### Questions to be answered:

How does repeated nicotine exposure result in long-term changes in behavior?

- ·What signaling pathways are involved?
- ·What are the downstream molecular consequences of repeated nicotine exposure?

# Nicotine exposure decreases glutamate-mediated Ca2+ influx



# Nicotine decreases glutamate-mediated Ca2+ influx via calcineurin activation







# Calcineurin protein and activity is decreased by AAV-shRNAs





CnAγ GAPDH



# Nicotine locomotor sensitization is attenuated by AAV-shRNA in VTA but not NAc





Amine Bahi

# Nicotine CPP is attenuated by AAV-shRNA in VTA but not NAc



Amine Bahi

Acute nicotine  $\longrightarrow \uparrow DA \longrightarrow Locomotor$  activation

Chronic nicotine † calcineurin | DA | Locomotor sensitization

Chronic nicotine calcheurin DA Locomotor Activation

#### Previous work with DIGE: Chronic Nicotine - NAc

- 4 groups of mice were generated:
   WT-sac, WT-nic, KO-sac, KO-nic.
- Each group received the treatment in the drinking water for 28 days, a regimen of nicotine we have shown regulates CREB activity in WT mice.
- The NAc shell was dissected out for proteomic analysis.

Question: What are the protein changes in the VTA and/or NAc that are responsible for nicotine-dependent plasticity?

#### Previous work with DIGE: Chronic Nicotine - NAc





Wildtype Chronic Nicotine Beta-2 KO Chronic Nicotine

Rebecca Steiner

## Spot Differences



Up in Nic-WT Up in Nic-KO

#### IDs for Chronic Nicotine - NAc

| <i>C</i> y5/ <i>C</i> y3 | Identification         | Function          |
|--------------------------|------------------------|-------------------|
| 1.56                     | BASP-1                 | Cytoskeleton?     |
| 1.58                     | Enolase-1 $\alpha$     | Energy metabolism |
| 1.71                     | Neurofilament 3        | Cytoskeleton      |
| 1.77                     | β-actin                | Cytoskeleton      |
| 1.78                     | Enolase-2 γ            | Energy metabolism |
| 2.08                     | hsp70                  | Energy metabolism |
| 2.46                     | ATP synthase cat sub A | Energy metabolism |
| 2.55                     | Tubulin-β2             | Cytoskeleton      |
| 2.56                     | MARCKS                 | Cytoskeleton      |

Unable to confirm by western blotting

# iTraq results for VTA and NAc (analysis by Can Bruce)





VTA

NAC

For the 186 proteins detected peptides in VTA, the 80<sup>th</sup> percentile boundaries are at 0.81 and 1.22. The p-value of values outside these boundaries is 0.04. Proteins outside this boundary whose identification depended on more than a single distinct peptide and whose fold change was +/- 1.33 fold were considered to be significantly different.

#### VTA

| Protein name                    | Gene   |       | Fold   |
|---------------------------------|--------|-------|--------|
|                                 | name   | ratio | change |
| synaptotagmin 1                 | Syt1   | 0.45  | -2.24  |
| Tubulin beta-3                  | Tubb3  | 0.61  | -1.65  |
| Sodium/potassium-transporting   |        |       |        |
| ATPase subunit beta-2           | Atp1b2 | 0.71  | -1.41  |
| Carbonic anhydrase 2            | Car2   | 0.72  | -1.38  |
| ATP synthase coupling factor VI | Atp5j  | 1.60  | 1.60   |

### NAC

| Myristoylated alanine-rich C-kinase substrate | Marcks  | 0.49 | -2.06 |
|-----------------------------------------------|---------|------|-------|
|                                               | mar ens | 0.17 |       |
| CaM kinase-like vesicle-associated            |         | 4    | 4 0=  |
| protein                                       | Camkv   | 0.51 | -1.95 |
| Isoform 1 of Isocitrate                       |         |      |       |
| dehydrogenase [NAD] subunit                   |         |      |       |
| alpha, mitochondrial precursor                | Idh3a   | 0.74 | -1.35 |
| Phosphoglycerate mutase 1                     | Pgam1   | 1.39 | 1.39  |

### Pathway analysis (C. Bruce)





VTA

NAC

Three out of five of the differentially regulated proteins in VTA and 3 out of 4 in the NAc are transcriptionally regulated by SP1. The probability of this enrichment is 0.003, suggesting that SP1's involvement with these proteins is unlikely to be due to chance.

### Pathway analysis (C. Bruce)





VTA

NAC

Calcineurin can regulate the activity of the SP1 complex by dephosphorylating cJun and modulating the association between SP1 and cJun.

### Phosphoproteins in VTA and NAc

#### Blue shading:

Total levels unchanged but phosphorylated peptide significantly changed.

| VT A                                                      |                                 | Nic  | P *    |  |  |  |  |  |
|-----------------------------------------------------------|---------------------------------|------|--------|--|--|--|--|--|
|                                                           |                                 | /Sal |        |  |  |  |  |  |
| Ina Alpha-internexin                                      | S <u>T</u> EAIRASREEIHEYRRQLQAR | 1.87 | 0.043  |  |  |  |  |  |
|                                                           | QLQ AR TIEI                     | 1.08 | 0.648  |  |  |  |  |  |
|                                                           | RLPASDGLDL SQAAAR               | 0.84 | 0.535  |  |  |  |  |  |
|                                                           | 18 Unphos. peptides             | 1.10 | 0.350  |  |  |  |  |  |
| Hspd1 Isoform 1 of 60                                     | QMRPVSR                         | 1.34 | 0.006  |  |  |  |  |  |
| kDa heat shock protein, mitochondrial precursor           | 2 Unphos peptides               | 1.19 | 0.341  |  |  |  |  |  |
| Atp2b1 plasma                                             | ISTIPTSRLK                      | 1.37 | 0.0001 |  |  |  |  |  |
| membrane cal cium ATPase 1                                | 3 unphos. peptides              | 1.22 | 0.270  |  |  |  |  |  |
| Aldh5a1 Succinate-                                        | MATCFLLR <u>S</u> FW AAR        | 1.46 | 0.011  |  |  |  |  |  |
| semialdehyde<br>dehydrogenase,<br>mitochondrial precursor | 1 Unphosphorylated peptide      | 1.02 | 0.896  |  |  |  |  |  |
| anactnin hata 3                                           | AA <u>S</u> AGVPYHGEVPVSLAR     | 2.07 | 0.095  |  |  |  |  |  |
|                                                           | GL <u>T</u> RAMTMPPVSQPEGSIVLR  | 1.14 | 0.789  |  |  |  |  |  |
| spectrin beta 3                                           | QTLPRGPAP <u>S</u> PMPQSR       | 1.17 | 0.561  |  |  |  |  |  |
|                                                           | (no unphos peptides detected)   | -    | -      |  |  |  |  |  |
| NAc                                                       |                                 |      |        |  |  |  |  |  |
| Ina Alpha-internexin                                      | RLPA <u>S</u> DGLDL SQAAAR      | 1.53 | 0.031  |  |  |  |  |  |
|                                                           | QLQ AR <u>T</u> IEI             | 1.07 | 0.591  |  |  |  |  |  |
|                                                           | S <u>T</u> EAIRASREEIHEYRRQLQAR | 1.57 | 0.084  |  |  |  |  |  |
|                                                           | 18 Unph os. peptid es           | 0.88 | 0.962  |  |  |  |  |  |
|                                                           | AA <u>S</u> AGVPYHGEVPVSLAR     | 1.57 | -      |  |  |  |  |  |
| spectrin beta 3                                           | GL <u>T</u> RAMTMPPVSQPEGSIVLR  | 0.88 | 0.649  |  |  |  |  |  |
| spectim beta 5                                            | QTLPRGPAP <u>S</u> PMPQSR       | 1.00 | 0.994  |  |  |  |  |  |
|                                                           | (no unphos peptides detected)   | -    | -      |  |  |  |  |  |

Can Bruce

#### Questions and Future Directions:

- 1. Determine whether nicotine can regulate SP1.
- 2. Determine whether cJun and SP1 cooperate to regulate nicotine-dependent changes.
- 3. Identify a role for calcineurin in nicotinedependent gene expression, potentially through regulation of the cJun-SP1 complex.

#### Ongoing projects for proteomics:

- 1) <u>Calcineurin attenuates nicotine-induced cellular and behavioral plasticity</u>: we want to find proteins that are dephosphorylated in VTA in response to nicotine sensitization or CPP.
- 2) <u>CREB activity in NAc shell is necessary for nicotine reward</u>: we want to look for proteins that are regulated in the NAc shell in response to nicotine CPP in WT but not beta 2 KO mice.
- 3) <u>Developmental nicotine exposure or beta 2 KO result in hypersensitive passive avoidance learning due to effects on corticothalamic neurons.</u> We have microarray data showing that the largest group of overlapping changes in expression with the hypersensitive PA is in cortex: we want to identify proteins in cortex and thalamus that are responsible for the permanent behavioral change resulting from developmental nicotine exposure.