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Abstract

Determination of axonal pathways provides an invaluable means to study the con-
nectivity of the human brain and its functional network. Diffusion Tensor Imaging
(DTI) is unique in its ability to capture the restricted diffusion of water molecules
which can be used to infer the directionality of tissue components. In this paper,
we introduce a white matter tractography method based on anisotropic wavefront
propagation in diffusion tensor images. A front propagates in the white matter with
a speed profile governed by the isocontour of the diffusion tensor ellipsoid. By us-
ing the ellipsoid, we avoid possible misclassification of the principal eigenvector in
oblate regions. The wavefront evolution is described by an anisotropic version of
the static Hamilton-Jacobi equation, which is solved by a sweeping method in order
to obtain correct arrival times. Pathways of connection are determined by tracing
minimum-cost trajectories using the characteristic vector field of the resulting par-
tial differential equation. A validity index is described to rate the goodness of the
resulting pathways with respect to the directionality of the tensor field. Connectiv-
ity results using normal human DTT brain images are illustrated and discussed. We
also compared our method with a similar level set-based tractography technique,
and found that the anisotropic evolution increased the validity index of the obtained
pathways by 18%.
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1 Introduction

Diffusion Tensor Imaging (DTT) has emerged as a noninvasive imaging modal-
ity capable of providing in vivo information of the white matter structure in
the human brain. Brain white matter, because of its elongated and fibrous
nature, exhibits higher hindrance to water diffusion across the fiber axes than
along them. This directional variation also known as anisotropy, is defined by
the variance of diffusivity rates which can be captured by diffusion-weighted
images. Although the true source of anisotropy in white matter still is not well
understood, this water restriction is mostly attributed to the cell membrane
and has been shown to be modulated by the myelin sheath [1,2].

In DTI, by acquiring diffusion-weighted images in at least six non-collinear
directions, it is possible to estimate a 3x3 symmetric matrix (i.e. diffusion
tensor) at each location that characterizes diffusion in anisotropic systems [3].
By diagonalizing this matrix, one can find its eigenvalues and eigenvectors
which represent the main diffusion orientations within a voxel. In the white
matter, the eigenvector corresponding to the largest eigenvalue is assumed to
point along the direction of a fiber bundle. Classical tractography methods,
known as line propagation methods or streamline-based techniques, rely on the
orientation of the largest eigenvector to determine the orientation of axonal
fiber pathways [4].

Numerous fiber tractography techniques have been described in the literature
[4-8]. They have enabled the reconstruction of large white matter structures
in the brain such as the corpus callosum and pyramidal tracts. Classical meth-
ods propagate from a seed voxel by locally adapting the curve orientation to
the vector field given by the major tensor eigenvector. They end at locations
with low anisotropy or at places where the trajectory takes a sharp turn. Sev-
eral problems, however, affect their reliability. First, the diffusion images are
subject to acquisition noise [9] which can impede the ability to track fibers.
Also, while it is true that the principal eigenvector provides an estimate of the
microscopic fiber direction [2], because of partial voluming when fiber tracts
cross, branch or merge, signal contributions from multiple tissues can affect
individual voxel measurements [10] resulting in a variation in the distribution
of fiber directions. Therefore, tracing smaller bundles becomes a significant
challenge to line integration methods at current resolution limits.

Methods derived from level set theory [11] have been recently employed to
track axonal pathways [12-15]. These techniques model the evolution of an
advancing front through the white matter tracts by following the local di-
rectionality provided by the diffusion tensor field. Such methods have been
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shown to be more robust to noise and singularities (branches, crossings, etc.)
than classical streamlining methods [15]. Also, this framework not only allows
for track reconstruction but it automatically assigns a connectivity value for
every point in the tract.

A tractography technique based on Tsitsiklis’ fast marching method (FMM) [16]
was first used by Parker et al. [12]. A front was evolved with a speed propor-
tional to the colinearity between the front normal and the tensor principal
eigenvector. A discrete approximation of front direction was used to drive
the evolution through the eigenvector field, since the original FMM does not
correctly handle propagation in oriented domains. O’Donnell et al. [13] intro-
duced two different approaches. The first approach is an extension of earlier
methods that models the problem as a heat diffusion equation and then com-
putes the flux flow across a certain cross section at steady state. In their
second approach, the problem is posed in a Riemannian framework where lo-
cally the space is warped based on the three eigenvectors and the connectivity
corresponds to the path lengths of the underlying geodesic paths. A level set
was evolved with a speed proportional to the length of the projected sur-
face normal from Riemannian into Euclidean space. Similarly, Lenglet et al.
[14] has considered the white matter as a Riemannian manifold. The problem
of finding a path between points in the white matter becomes one of find-
ing minimal geodesics in the Riemannian space. Both methods employed the
dynamic perspective of level sets, in which a narrow band was employed to
constrain front propagation and reduce computation time. Campbell [15] has
recently described a level set approach for determining connectivity using ten-
sor and high angular resolution diffusion acquisitions. There, a wavefront was
propagated using the fiber orientation distribution (ODF) derived from the
spin displacement probability function. While arrival times of the wavefront
were used to compute fiber likelihood values, the problem was formulated as
a time-dependent dynamic evolution and required explicit recording of the ar-
rival times at each point. Minimum-cost pathways were then traced by using
the gradient of the solution, as done by Parker [12].

Our method also poses the connectivity problem in the setting of level set the-
ory. We extend our previous connectivity work made on synthetic tensor fields
and determine its applicability in real human diffusion tensor data [17,18]. In
contrast to other level set-based methods, we adopt an anisotropic distance
function for front evolution, in which the discrete approximation of front nor-
mal is not required. The speed by which the front propagates is given by the
distance between the center of the diffusion ellipsoid and a point on its iso-
contour in the front normal direction. The solution to the resulting partial
differential equation (PDE) is obtained by an iterative sweeping approach,
yielding correct arrival times. By using a static version of the level set equa-
tion, we avoid the localization and recovery of each zero-level set at different
time steps, as is done by other methods. Similarly to other approaches [13,15]



though, we use the entire tensor to control the evolution and avoid the possible
biasing of its principal eigenvector in more isotropic regions.

Because the propagation equation is anisotropic, we backtrack along its char-
acteristic curves rather than its gradient in order to extract fiber pathways.
Characteristic curves are integral curves obtained by reducing the evolution
PDE into a set of ordinary differential equations. The combination of the
these curves provide a solution to the PDE. In the following, we first model
the white matter connectivity problem as one of wavefront evolution. Then
we proceed to describe our front evolution model and the numerical algorithm
to solve the respective partial differential equation (PDE). We also show that
the minimum-cost pathway is determined by the characteristic vector of the
PDE and not its gradient direction [19]. Connectivity results using a normal
human dataset are presented and compared to those obtained with the fast
marching approach [20].

2 Methods
2.1  Minimum-Cost Pathways

The white matter connectivity problem can be viewed as an instance of the
minimum-cost path problem in an oriented weighted domain. Essentially, one
would like to find a fiber pathway P(s) : [0,00) — R? that minimizes some
cumulative travel cost from a starting point A to some destination point B in
the diffusion tensor field.

In the case of simple scalar images, the cost function, given by 7 or its recip-
rocal speed F' = 1/7, is only a function of position x, and it is called isotropic:

T(x) = min / 7(P(s)) ds (1)

where L is pathway length, and the starting and ending points are given by
P(0) = A and P(L) = x. A solution to (1) also satisfies the Eikonal equation
|\VT|| F(z) = 1, which describes a wavefront propagating with speed F' where
T'(x) is the time of arrival of the front at point .

An efficient single-pass method to solve the Eikonal equation was originally de-
signed by Tsitsiklis [16] and rediscovered by Helmsen et al. [21] and Sethian [22]
and it is widely known as the fast marching method (FMM). The FMM pro-
vides a continuous solution to the shortest-path problem by employing upwind



differences and a causality condition.

In the case of DTI, however, we need to consider the embedded directionality
present in the tensor field, and thus the cost function 7 will be a function
of both position P(s) as well as direction P’(s). Because of this directional
dependence, the cost function is called anisotropic and is given by:

T(w) = min [ 7(P(s), P'(s)) ds, (2)

where again L is pathway length, and the starting and ending points are given
by P(0) = A and P(L) = x. A solution to (2) satisfies the so-called anisotropic
wave propagation equation,

\VT|| F(x,VT) =1, (3)

which describes a wavefront propagating with speed F' where T'(x) is the time
of arrival of the front at point x. This type of equation typically arises in
problems where a preferred direction of travel exists.

Classical solutions for partial differential equations (PDE) are obtained by
first reducing it into an independent system of ordinary differential equations
(ODE). This can be accomplished by the method of characteristics [23,24]. For
a first-order PDE, a characteristic is a line in phase space, that comprises the
independent variables, dependent variables and its partial derivatives along
which the PDE degenerates into an ODE. With suitable initial boundary con-
ditions, the solution can then be constructed by solving the ordinary differen-
tial equations and following the characteristics. The union of these character-
istic curves form a surface which provides a solution to the PDE. Note that
solutions to (3) in continuous space are given by the Hamilton-Jacobi (HJ)
equations and a classical solution may not exist because they develop dis-
continuities. Hence the viscosity solution is commonly sought [11,25-27]. The
viscosity solution is obtained by adding a smoothing term to the right-hand
side of the PDE. This smoothing term is a function of the second derivatives of
the equation and prevents the developments of such discontinuities. Numerical
approximations of the viscosity solution have been studied [28-30].

Once the evolution equation (3) is solved for all points in the domain, one can
derive a solution for the minimum-cost path (2) by tracing the characteristics
of the wavefront using the resulting arrival times.



2.2 Connectivity Wavefront Model

In contrast with methods which rely on the principal eigenvector of the tensor
in order to trace connectivity, we employ the entire tensor in the propagation
model. This is similar to other approaches [31,14,13], however we properly
account for the anisotropy present in the resulting PDE. By using the entire
tensor, we avoid measurement errors of the principal eigenvector in oblate
tensor regions, which may lead to wrong assignment of front arrival times.

Let us assume the diffusion tensor D has been factored into D = VAV L,
where V' is the matrix containing the eigenvectors and A is a diagonal matrix
containing the corresponding eigenvalues. Furthermore, assume the eigenvec-
tors are ordered such that A\; > Ay > A3. The diffusion tensor can be written
into a normalized form D’ = VA'V~! where A’ = A(1/);). This normaliza-
tion makes the any segment connecting the center of the ellipsoid to its surface
have a maximum length of 1.0. In our propagation, we will use this length to
drive the propagation. This is also done because we are not concerned with
the apparent diffusivity coefficients from the original tensor, but rather the
ellipsoid’s shape, which will control evolution.

We design our wavefront to evolve from a given seed point A, T(A) =0, at a
speed governed by the distance from the center of the diffusion ellipsoid, D’
to its isocontour in the front normal direction 7:

VT
VT

d(il) = @D’ 7, il =

(4)

The motivation behind equation (4) is to let the speed vary locally according
to the normalized tensor isocontour, descriptive of the underlying diffusion
process. The value of d(77) will be 1.0 when 7 = ¢;. Thus, we can write the
propagation equation as follows:

IVTI[ ad(@) = 1, ()

where o weighs the final propagation speed. Since water diffusion measured
in the ventricles and in the gray matter is less directional than in the white
matter, the resulting tensor profile tends to be spherical with eigenvalues A\ ~
Ay >~ A3. We want to prevent propagation into these areas, and thus we choose
a to be a measure of diffusion tensor anisotropy. For that, we use the well-
known FA index [32]. While we have experimented with different forms of «
previously [17], we did not observe a significant difference in the propagation
result. In this work, we set a = FA. In areas of crossings and branches,; it is
expected that a low FA value will slow down the evolution and thus penalize
these areas with higher traversal costs. The evolution, however, will still get



through these singularity regions, since the FA will not be as low as in isotropic
regions.

Propagation equation (5) belongs to a family of static Hamilton-Jacobi equa-
tions described by:

H(x,VT)=V(z), z€f

(6)
T(z) = s(x)

where ) is the domain in R3 V(z) =1, and s(x) is a function prescribing
boundary condition values, T'(A) = s(A) = 0. Therefore, we can rewrite (5)
as the following Hamiltonian, after discarding the dependence of z on H:

2 2 2
H=oaypP+¢@Z+12 (P di1+q-doa+r dpsgi—jfiilf-&-?mdm-i-%m%) (7)

9L " = 9T and d;; are the tensor elements. While equa-
oy’ 0z J

tion (5) can be reformulated as a time-dependent HJ equation and solved by
recovering each zero-level set, it is more convenient and less computationally
expensive to model it as a static problem and determine arrival times instead.
In the following section, we will describe an iterative method that solves our
static HJ equation (7) so that a viscosity solution can be obtained.

where p = g%v q=

2.3 Anisotropic Wavefront Evolution

Hamiltonians such as (7) cannot be correctly solved by isotropic propagation
methods, such as the Fast Marching Method. While numerical methods for
obtaining viscous solutions to static anisotropic propagation equations exist,
their implementation tends to be more involved than those used in isotropic
problems. Single-pass [30] and iterative methods [28,29] have been devised
to construct accurate solutions for such equations. Single-pass algorithms are
based on the monotonicity of the solution along the characteristic directions
in order to compute the arrival time T'(x). Iterative methods, on the other
hand, compute arrival times in a number of pre-defined directions.

We use a Lax-Friedrichs (LF) discretization of our Hamiltonian and employ
a nonlinear Gauss-Seidel updating scheme [29] to solve the propagation equa-
tion. With the LF discretization, a solution at each grid point can be easily
obtained in terms of its neighbors. Also, no minimization is required when
updating an arrival time, and thus it is very easy to implement.



The Lax-Friedrichs Hamiltonian of equation (7) is defined as:

T~ gt4g— rtae— Ox — ay — Oz —
HYF = H (e e ) — % (5t —p7) = (g =) = (T =) (8)

where p*, g% and r* are the forward and backward difference approximations
for VT, and o; are the artificial viscosities which depend on the second deriva-
tives of H with respect to p, ¢ and r. This artificial dissipation smoothes out
possible discontinuities and therefore enforces the stability of the approxima-
tion [26].

2.3.1 Lax-Friedrichs Sweeping Algorithm

Initially, all seed points for propagation are labeled as frozen and their time
of arrival are assigned to zero (Step 1).

Next, to get a numerical approximation for (7) we solve for HIY" = 1 by
sweeping the domain in the alternating directions +x, +y and £z (Step 2).
By doing this, we are able to follow a group of characteristics at each iteration.
At every point, HF is evaluated in terms of the immediate adjacent neighbors
(Update step). Values from the previous sweeping step are used to make the
approximation decreasing so that it updates an arrival time only if 77! <

z7j’k
Tk
Sweeping is stopped when the convergence criterion || T}% 1" =T || < € is met
(Step 3).
Outline

Consider the volumetric domain [Z,in, Zmaz] X [Ymin, Zmin] X [Zmin, Zmaz] With
points (x;,y;, 2), © € [0,1,...mg,my+1], j € [0,1,...my,m,+1] and k €
0,1,...m;,m,+1], where z; = (i — 1)Az + Zpin, ¥; = (J — 1)AY + Ymin,
2z = (k= 1)Az 4 zpmin and let Az = (Zya0 — Tmin) /(M — 1) and similarly for
Ay and Az.

(1) INITIALIZATION. Assign T (x) « s(x) for points where exact solution is
known. Freeze these grid values. For all other points, assign T (z) « oco.

(2) SWEEPING. Let (r,,ry,r,) = (£1,£1,£1) be the alternating directions
in each dimension:

for(i = (rp,<0?my:0); (ry<0?7i>0:i<myg); i+=r,)
for(j = (ry,<0?my:0); (ry,<0?j>0:j<my); j+=r,)
for(k = (r,<0?m,:0); (r.<0?7k>0:k<m,); k+=r,)

Uppate T,



(3) CONVERGENCE. If ||[T™+! — T™| < ¢, stop, otherwise go to step (2).

UPDATE. Given iteration m + 1, if point (4, j, k) is not frozen, let a = pT+p~,
b=q"+q and ¢ =rT+r~ and compute:
L = w(1-H@ g, 5.9)+
W Tk + Tic1jk)+
W (Tija e + Tijo16)+
w7 (T jryr + Tijr—1)

-1
— ([ oz Iy Oz
where w = (Ax—l—Ay—i—AZ) .

Because the 3D LF method yields a solution utilizing adjacent neighbors,
values for points outside the boundary of the domain are extrapolated in
order to guarantee the outflow of the solution at the computational boundary.

The accuracy of the LF method will depend on the grid size chosen as well
as the artificial viscosities. Large viscosity values will smear out the solution,
so it is important to select appropriate values for o;, such that o, > max|aa%|,
oy > max]%:g\ and o, > max|%C|. More details on the algorithm, accuracy and
convergence of the LF sweeping (LF'S) scheme can be found in Kao et al. [29].

In the case of diffusion tensor images, we can speed up the wavefront evolution
process by masking out the background, focusing the calculations only on the
brain parenchyma. Thus we freeze values outside the mask, setting the arrival
times to infinity. Since frozen values are assumed to be given, they are never
updated, speeding up the sweeping process.

2.4  Characteristic directions

It is important to realize that minimum-cost paths are determined by the
characteristic curves of the partial differential equation [23,24]. A generic first-
order PDE with m independent variables is described by:

ou
(9@’

H(z;,u,p;) = 0,where p; = i=1,...m 9)

where u is a function of the independent variables z;. In our case, u repre-
sents the arrival times of the wavefront. The characteristics for such a partial
differential equation can be obtained via Charpit’s equations [23]:



L= o (10)
. Op;  OH OH
Pi= 5t = " om  Pou (11)
o Ou N
U—a—;pi% (12)

Together, they form a (2m + 1)-dimensional characteristic space which de-
scribes the solution of u. Given appropriate initial values for p; and u at ¢t = 0,
one can construct the solution for the PDE, by integrating each one of these
equations along t. The characteristic vector X = (&1, ..., x),) of the solution
u given by (10) is a projection of the higher-order characteristic space. Its
integration with respect to t will yield the characteristic curves of the PDE.

In the case of isotropic equations such as the 3D Eikonal:

H:\/p%—i_p%_'_p% F(I1,$27$3)—1:O (13)

it is easy to observe that the characteristic vector % will lie in the same direc-
tion as the gradient, since:

p1- F . p2 - F . ps - F

Y, I —/—/—/—/—/—, I3 = —/—/———
VPl + D5+ 03 VP P33 VDT + s+ 3

(14)

Ty =

and therefore the minimum-cost path X, between point A and an arbitrary
point B becomes a solution to % = —Vu, given X (0) = B. This optimal path
can be constructed by integration starting from point B back to the seed point
A using standard numerical techniques. Figure 1a illustrates the evolution of
an isotropic wavefront in a two-phase environment. In the left half of the space
F' =1 and in the right half, F' = 2. The front propagates faster once it reaches
the region with less viscosity. Both normals and characteristics are the same
and are depicted in Fig. 1b. Fig. 1c illustrates minimum-cost pathways from
different locations in the less viscous area.

Consider now the following anisotropic 3D Eikonal equation:

H:\/ap%+bp§+cp§ F(x1,29,23) —1=0 (15)

In the case where F' = 1 everywhere, this equation describes a wave propa-
gating in an ellipsoidal fashion. Differentiating H with respect to pi, pe and
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Fig. 1. (a) Evolution of the front \/pf + p3 - F(z1,22) = 1 in a two-phase environ-
ment, shown as orange curves. (b) Front normals 7 = X = Vu/|Vul|, shown as
white lines. (c) Minimum-cost pathways traced from 9 different locations in cyan
color.

ps3 yields the following characteristic vector:

T
)-(;:< a,plF bng Cng ) (16)
Vat +bpd +cpi \Japt + b3+ cpd\Japt + bpd + epf

Note that, in this case, the characteristic X 10 longer coincides with the gra-
dient 77 = Vu. Therefore, one must integrate % = —X instead to obtain the
minimum-cost path. Figure 2a shows the 2D propagation of an anisotropic
front (@ = 1,b = 0.25) through a two-phase environment: left region with
F =1, and F' = 2 in the right. Fig. 2b shows the front normal vector field
which is clearly different from the characteristic vector field seen in Fig. 2d.
That is because the propagation equation depends not only on location but
also on the direction of the front, since it favors the x axis over y. Shortest-
paths are then characterized by integrating along the characteristics (Fig. 2e)
rather than normals (Fig. 2¢).

As we have seen above, when correctly designed, the speed function F' may
also depend on the gradient information of the wavefront, and this will also
make the PDE anisotropic. Again, in such instances, the trivial integration
of VT will not yield the correct result for the minimum-cost path problem.
Furthermore, any geometrical information derived from such pathways, such as
curvature or directional coherence to the tensor field may become meaningless.

2.5 Validity Index

After tracing the fiber pathways by back-tracing on the characteristic vector
field, we must still assess how coherent these pathways are to the underlying
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Fig. 2. (a) Evolution of the front \/pf + 0.25p3 - F(z1,22) = 1 in a two-phase
environment, shown as orange curves. (b) Front normal 77 = Vu/||Vul| depicted as
white arrows. (¢) Minimum-cost pathways traced from 9 different locations using
ii. (d) Front characteristic vector X depicted as green arrows. () Minimum-cost
pathways using X = (21, 22)" shown in yellow.

fiber directionality. This is necessary because we also allow movement in the
direction perpendicular to the direction of principal diffusivity, albeit to a
smaller degree. We define a validity index as the mean colinearity between the
tangent of the pathway P(s) and the principal tensor eigenvector €:

_ JIls)- G(s)] ds
[ ds

V(P(s)) (17)

The validity index will be maximum for a minimum-cost trajectory that closely
follows the principal eigenvector field. We anticipate that because of fiber
crossings and other partial volume effects, the validity index may be low in ar-
eas containing singularities. Nevertheless, the mean colinearity value provides
a reasonable index for assessing whether a minimum-cost pathway represents
a true trajectory in diffusion tensor images. The validity index is similar in
nature to what has been described as a connectivity metric [20]. It will also
enable a quantitative comparison of our method with Parker’s Fast Marching
Tractography [20].
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Fig. 3. (a) FA map and seed point at the splenium of the corpus callosum (at
cross-hairs). (b) LFS propagation map in which darker regions reveal earlier ar-
rivals. (¢) FA map overlaid with zero-level sets up to time 1600. (d) 14,952 resulting
pathways colored pointwise according to the validity index (from yellow=low to
red=high). (e) Pathways colored with fiber average validity index.

3 Results

Diffusion-weighted data of a normal subject was acquired using a Siemens 3T
Trio scanner with a standard head coil. A single-shot EPI image of matrix size
128x128x40, resolution 2x2x3 mm?, b-factors 0 and 600 s/mm~2, TR=>5400
ms, TE=81 ms, and 32 gradient directions uniformly sampled on a sphere was
obtained. A twice-refocused spin echo pulse sequence was utilized to minimize
the distortions due to Eddy currents [33]. The diffusion tensor was calculated
from a total of 12 averages to maximize signal to noise ratio. The diffusion
tensor was diagonalized and the fractional anisotropy (FA) map calculated
using its eigenvalues.
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3.1 Laz-Friedrichs Sweeping Method

In order to evaluate connectivity using LF'S method, we fixed a seed point in
the splenium of the corpus callosum (Fig. 3a) and propagated our wavefront
throughout the tensor image (Fig. 3b). A total of 45 iterations were needed
for convergence with e = 1073, Time for convergence was ~ 7 minutes on a
Intel Pentium Xeon 1.7Ghz machine with 1.5Gb of RAM.

Figure 3c depicts the resulting arrival time level sets between 0 and 1600. In
order to trace connectivity pathways to the splenium, we first obtained an ap-
proximate boundary of the white matter according to the following procedure.
The FA image was thresholded at 0.18, in order to obtain all points belonging
to the white matter. Next, by using a morphological operator, we determined
the inner boundary of the thresholded region. Boundary points belonging to
ventricles were removed. All pathways between points on this boundary and
the point in the splenium were traced using the characteristic directions. A to-
tal of 14,952 fibers were successfully traced from the boundary points. A 4™ or-
der Runge-Kutta method with an integration step At = /22 4 22 + 32 ~ 4.12
mm was used.

Figure 3d shows the resulting fiber pathways. Individual points were colored
according to the colinearity between the tangent and the principal tensor
eigenvector, representing the validity index at each point. A continuous ramp
of colors varying from yellow to red was associated with the validity index.
High validity values are shown in red while points with low validity are shown
in yellow. Figure 3e shows the fiber pathways colored with the mean validity
index computed on a fiber-by-fiber basis. Although sections of fibers located
far from the splenium had a strong validity value (such as those in the frontal
lobe), only fibers connecting closer regions yielded a high fiber mean validity
value.

In order to assess whether the validity index could be used to rate the good-
ness of the extracted pathways, fibers were thresholded based on their mean
validity scores. Figures 4a-e shows top 20%, 10%, 5%, 2.5% and 1.2% fibers,
respectively. Fibers are colored according the validity values on individual fiber
points. Table 1 shows minimum, mean and variance values of the validity in-
dex for each set of fibers. As we raise the threshold on the validity index, fewer
fibers are obtained and the group mean validity value increases as expected.
At 1.25%, although minimum group validity was 0.7901, there were still few
fiber sections with even lower validity (shown in yellow), very likely indicating
regions of singularities. For comparison, we show the same result for fibers
found using the Fast Marching Method, described next.
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Validity index
0.500

Fig. 4. (a) Top 20% fibers colored pointwise according to the validity index. (b) Top
10% fiber pathways. (c) Top 5% pathways. (d) Top 2.5% pathways (e) Top 1.25%

0.750 1.00

Validiity index
0.500

0.750

1.00

pathways.
Top LFS FMM
% || Min | Mean | Variance || Min | Mean | Variance
20% || 0.6680 | 0.7178 | 0.0015 || 0.5500 | 0.5880 | 0.0009
10% || 0.7071 | 0.7465 | 0.0010 | 0.5801 | 0.6121 | 0.0005
5% || 0.7351 | 0.7700 | 0.0007 || 0.6075 | 0.6309 | 0.0003
2.5% || 0.7661 | 0.7928 | 0.0004 || 0.6280 | 0.6450 | 0.0002
1.25% || 0.7901 | 0.8082 | 0.0003 | 0.6450 | 0.6554 | 0.0001
Table 1

Fiber mean validity values for different top percent fiber groups for the LFS and
FMM methods. Maximum validity value for all fibers was 0.9342 using the LFS and

0.7451 using the FMM.
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Fig. 5. (a) FMM propagation of \/p? + ¢? + 72 (i - €)?, with € = (1,0,0)T. (b)
Corresponding LFS propagation. (¢) FMM propagation with € = (1,0.5,0)7. (d)
Corresponding LFS propagation.

3.2 Fast Marching Method

Here we compare the differences between connectivity results obtained with
isotropic [20,12,31] methods versus the LFS anisotropic propagation method.
The Fast Marching Tractography (FMT) technique designed by Parker used
the fast marching method (FMM) to determine connection pathways between
points in the white matter. In their work, the wavefront traveled with a
speed according to the colinearity between principal tensor eigenvector €1 and
front normal 7. As we have pointed out earlier, the resulting PDE becomes
anisotropic. Since the FMM only handles speed functions that depend on
position[30], it is interesting to compare the two methods when measuring
connectivity.

Before comparing connectivity results, let us first investigate their propagation
in the case of uniform speed fields. Let ||VT|| (7 - €)2 = 1 be the propagation
equation. This equation models a wavefront that travels fastest when the nor-
mal has the same orientation as the underlying vector field €. In the FMM, we
will approximate 7 during the fast marching process using the arrival times
of neighboring points. Fig 5a shows the resulting propagation using the FMM
with ¢ = (0,1,0)7. As one would expect the wavefront correctly moves faster
in the y direction. Fig. 5b shows the result of propagation by using the LFS
method. Except for a smoother result, the LF'S does not show a drastic change.
Now let us tilt the vector field, such that € = (1,0.5,0)%. Fig 5c shows the
corresponding result using the FMM. Note, in this case, the level surfaces do
not accurately depict the intended expansion. The LFS method, however, was
able to correctly solve the PDE (Fig. 5d). While a discrete approximation of 7
in the FMM degrades the accuracy of the arrival times, the resulting solution
profile in Fig. 5¢ should still resemble an ellipsoidal shape. The answer to the
problem lies in failing to observe the causality condition in the fast marching
method, where it is assumed that the gradient of arrival times coincides with
the direction of the characteristic. In this example, they will only coincide
when VT = +¢€.
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(a) (b) ()

Fig. 6. (a) FA map showing the seed point in the right hemisphere. (b) Resulting
pathways using the FMM method with gradient backtracing. (c¢) Resulting pathways
using the LFS method and characteristics.

To investigate the differences in terms of connectivity between the LF'S and the
FMM methods, we seeded a point in the frontal lobe of the right hemisphere
and probed for its frontal connections in left hemisphere. In these experiments,
the LFS method will use the characteristic vector for tracing pathways while
the FMM will use the gradient vector, unless otherwise stated. A subset of
the white matter boundary points (1,317) from the frontal area in the left
hemisphere was used to backtrace pathways to the origin of propagation. From
Fig. 6b and 6c¢ it can be seen that pathways resulting from these two methods
differ substantially in their trajectories. The main reason for this difference is
the use of the gradient of the arrival times by the FMM to compute the
connectivity pathways. These pathways do not represent true minimum-cost
trajectories, however they tend to converge into branches which coincide with
high directional coherence. Fig. 6¢ shows true minimum-cost pathways which
follow the characteristic vector field of the PDE. The mean validity score for
all fibers recovered with the LFS method was 0.7466 while in the FMM the
score was 0.5497. The LFS results show a better resemblance to fiber bundles
as they are seen from dissection illustrations [34].

To further compare results between the FMM and the LFS, a second exper-
iment was performed, in which the validity index of the resulting fibers were
calculated. Using the seed point in the splenium of the corpus callosum as
before, we used the FMM method to propagate a surface throughout the ten-
sor image. Fig. 7a shows 35 uniformly-spaced zero-level sets of the front up to
time 1600. The resulting isocurves can be immediately observed as being more
irregularly shaped than the isocurves from Fig. 3b. Using the same number
of white matter boundary points as in the LF'S method, pathways were back-
traced to the seed point (Fig. 7b). The mean overall validity value for all fibers
obtained with the FMM method (Fig. 7c) was 0.4926, compared to the 0.5696
from the LFS method. That shows an increase of 13.5%. We then thresholded
the fibers at different percentages and observed their validity scores. Table 1
shows the obtained statistic figures. Figures 7d-h depicts the resulting fiber
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Fig. 7. (a) FA map overlaid with FMM propagation showing zero-level sets up to
time 1600. (b) Resulting pathways colored pointwise according to the validity index.
(c) Resulting pathways colored fiberwise. (d) Resulting top 20% pathways. (e) Top

10% pathways. (f) Top 5% pathways. (g) Top 2.5% pathways. (h) Top 1.25% fiber
pathways.
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Fig. 8. (a) Resulting pathways from FMM using characteristics colored pointwise
according to the validity index. (b) Resulting pathways colored by the mean validity
scores in a fiberwise basis. (¢) Top 10% fiber pathways. (d) Top 5% pathways. (e)
Top 2.5% pathways (f) Top 1.25% pathways.

pathways colored by individual validity indices. A consistent average increase
of about 18% was observed in the mean validity scores in favor of the LFS
method. This shows that pathways obtained with the FMM method are less
coherent with directionality of the tensor field. Also, the FMM showed more
spurious fibers as can be seen in Fig. 7. Due to the intrinsic use of an artificial

viscosity in the LFS method, the resulting connections were smoother than
the ones obtained by the FMM.

3.8  Fast Marching Method using Characteristics

We also investigated whether the FMM method could be used to extract
pathway fibers by following the characteristic directions rather the gradient
directions. While the results were visually closer to those of the LFS method
(Fig. 8), a lot more false fibers were obtained with the same threshold levels. A
few fibers that could not be successfully traced back to the splenium can also
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Top % || Minimum | Mean | Variance

20% 0.7484 0.7905 | 0.0012
10% 0.7818 0.8171 | 0.0010
5% 0.8105 0.8413 | 0.0008
2.5% 0.8350 0.8630 | 0.0008
1.25% 0.8501 0.8807 | 0.0007

Table 2
Fiber mean validity values for different percent fiber groups for the FMM method
using characteristics. Maximum validity value for all fibers was 0.9782.

been seen. Those are probably due to errors in the resulting characteristic
field caused by the imperfections in the solution of the FMM. While this
hybrid implementation resulted in the highest global validity score (0.9782),
it has also yielded more variation at lower validity thresholds than the two
previous techniques (Table 2). This technique showed an apparent increase
of about 8% in mean validity scores compared to the LFS method. These
results include scores from those fibers which did not successfully reach the
origin of propagation. By discarding those and re-evaluating the statistics,
we still obtained a higher overall validity index compared to the LFS. We
attribute this result to the ability of the FMM to yield a solution without the
additional smoothness term as is present in the LF'S method. High curvature
trajectories are likely to have been smoothed out in the solution computed
by LFS, yielding a lower global validity score. We note, however, that the
FMM does not yield the correct arrival times for the anisotropic PDE and the
resulting characteristic vector will not be correctly estimated.

4 Discussion

We believe that fiber pathways computed from DTI can be described as
minimum-cost pathways. Connections between cortical regions are kept opti-
mal as the brain develops [35]. Because of physical constraints, these connec-
tions should minimize length and perhaps curvature as well. Such constraints
can be effectively modeled by the propagation of interfaces or fronts. With
the LFS method and characteristic curve backtracking, we were able to suc-
cessfully trace optimum pathways that were more coherent with the principal
eigenvector field than FMM methods that rely on a gradient descent approach.
This is due to the proper anisotropic solution achieved using the LFS method
and the tracing of the characteristic curves of the PDE, which are the true
shortest pathways to the origin of propagation. The resulting pathways from
the LFS method were more naturally distributed than the ones recovered by
gradient descent, as can be seen in synthetic fields (Figs. 2c and 2d) as well
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as in human data (Figs. 6b and 6¢). Pathways resulting from the gradient
descent approach present more spatial overlap, and seem to converge prema-
turely into the fastest route of connection. Our validity scores indicated that
these routes are not the optimal ones, yielding a consistently lower mean co-
linearity for corresponding pathways. It was also shown that when using the
FMM method coupled with characteristics tracking, a higher global validity
index was obtained. In future work, we can further assess these results by em-
ploying a sweeping method which does not require any smoothness terms [28§]
and then re-evaluate the validity scores.

Parker [20] used the minimum value of the colinearity as the connectivity
metric. Due to the presence of effects such as crossings and branches, this
index can be highly conservative. Since our goal is to recover pathways that
can go across such singularities, we used the mean colinearity between the
tangent to the pathway and the principal eigenvector as our metric. Although
this measure may not be reliable in singular regions, it does provide a global
indication of whether or not the extracted trajectories conform to the tensor
directionality. Furthermore, most of a fiber trajectory will not likely fall in
areas of singularity. The validity index also provides the means for a quanti-
tative comparison against tractography methods which rely on the principal
tensor eigenvector [20]. In future work, we will seek different forms of valida-
tion which will not be affected by crossing or branches. We will also investigate
whether the fractional anisotropy value could be incorporated in the index,
thereby giving a low weight for pathway points falling inside these regions.

For high angular resolution data, higher-order tensor formulations [36-38]
could be used to derive the isoprobability contour of non-Gaussian diffusion.
Such an isocontour could be used in the speed function of the front propaga-
tion equation, despite the complexity of the high order terms. Campbell [15]
has employed before both tensor and high resolution data to derive a wave-
front evolution methodology using particle displacement probabilities. It was
shown that tractography results using high angular resolution data had much
less diverging trajectories than those obtained with the diffusion tensor. How-
ever, gradient curves rather than characteristic curves were used for tracking.
As shown by Campbell [15], high-angular datasets will allow one to trace
pathways more accurately when multiple populations of fibers are present in
a voxel. In this scenario, the validity index would rely on the maxima of the
generalized tensor profile.

In our results, we obtained minimum-cost trajectories between points in the
boundary of the white matter and a point in the splenium. This was performed
to mimic similar experiments done by other investigators and to provide a
means to compare our findings. While anatomically the great majority of these
pathways will not exist, one can use the validity scores to select only the most
likely ones. It is possible to reformulate the propagation equation to restrict
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evolution only to the direction of maximum diffusivity. In this case, a validity
index may not be necessary. However, this type of evolution will not allow
for alternate pathways to be found as it will only cross through the branches,
and not exploit them. A shortest pathway between any pair of points may no
longer exist in this configuration, since it may take an infinite time for it to
reach the origin of propagation.

While the diffusion tensor data used in this work was not spatially smoothed,
we predict that the use of a tensor regularization method would certainly im-
prove the quality of the connectivity results, yielding higher validity scores.
While we have shown the robustness of the LF'S tractography method in trac-
ing fibers through crossings in different levels of noise before [17], we plan to
further validate our results with other available known ground-truth synthetic
datasets [39]. We will also be able to assess differences between tracing the
characteristics versus tracing the gradient vector. The characteristics, though,
are the true minimum-cost path solutions for trajectories modeled here. The
mismatch between them and the gradient vector field is clear from Fig. 2.

In future work, we will investigate specific cortical connections by seeding
appropriate white matter boundary points, and then tracing optimum path-
ways to hypothesized target regions. We will also study whether additional
constraints such as pathway curvature or prior information could be useful in
devising a more robust validity metric. Ultimately, we would like to construct
an automated system for fiber tract reconstruction, which will allow the study
of white matter both in its normal and pathological states.

5 Conclusion

We have presented a technique for determining connection pathways from dif-
fusion tensor images using a new level set based approach. A wavefront is
evolved with a speed that depends on the distance from the center of the
diffusion tensor ellipsoid to its isosurface in the front normal direction. This
evolution is modeled by a static Hamilton-Jacobi equation which can be solved
efficiently by a Gauss-Seidel iteration technique combined with a sweeping ap-
proach. The sweeping approach is able to follow multiple characteristic direc-
tions at each iteration step. This results in the correct computation of arrival
times for the front. Minimum-cost trajectories are then determined by follow-
ing the direction of the characteristics rather than the gradient direction, as
has been done previously in the literature. These pathways represent plausible
anatomical connections which are then checked against a validity index, rep-
resentative of the main direction of diffusivity. Pathways resulting from our
method have shown a superior conformance to the principal eigenvector field
than other level set based approaches.
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