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In this paper, we build an organization of high-dimensional datasets that cannot
be cleanly embedded into a low-dimensional representation due to missing entries
and a subset of the features being irrelevant to modeling functions of interest. Our
algorithm begins by defining coarse neighborhoods of the points and defining an
expected empirical function value on these neighborhoods. We then generate new
non-linear features with deep net representations tuned to model the approximate
function, and re-organize the geometry of the points with respect to the new
representation. Finally, the points are locally z-scored to create an intrinsic
geometric organization which is independent of the parameters of the deep net,
a geometry designed to assure smoothness with respect to the empirical function. We
examine this approach on data from the Center for Medicare and Medicaid Services
Hospital Quality Initiative, and generate an intrinsic low-dimensional organization
of the hospitals that is smooth with respect to an expert driven function of quality.

© 2016 Elsevier Inc. All rights reserved.

1. Introduction

Finding low dimensional embeddings of high dimensional data is vital in understanding the organization

of unsupervised data sets. However, most embedding techniques rely on the assumption that the data set

is locally Euclidean [7,14,1]. In the case that features carry implicit weighting, some features are possibly

irrelevant, and most points are missing some subset of the features, Euclidean neighborhoods can become

spurious and lead to poor low dimensional representations.

In this paper, we develop the method of expert driven functional discovery to deal with the issue of

spurious neighborhoods in data sets with high dimensional contrasting features. This allows small amounts

of input and ranking from experts to propagate through the data set in a non-linear, smooth fashion. We

then build a distance metric based off these opinions that learns the invariant and irrelevant features from
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Fig. 1. Organization colored by: (left) risk standardized 30 day hospital wide readmission, (center) percent patients rating overall
hospital 9 or 10 out of 10, (right) risk standardized 30 day mortality for heart failure. Embedding generated via bigeometric
organization of deep nets. Red is good performance, blue is bad. (For interpretation of the references to color in this figure, the
reader is referred to the web version of this article.)

this expert driven function. Finally, we locally normalize this distance metric to generate a global embedding
of the data into a homogeneous space.

An example to keep in mind throughout the paper, an idea we expand upon in Section 4, is a data
set containing publicly-reported measurements of hospital quality. The Center for Medicare and Medicaid
Services Hospital Quality Initiative reports approximately 100 different measures describing various compo-
nents of the quality of care provided at Medicare-Certified hospitals across the United States. These features
range in measuring hospital processes, patient experience, safety, rates of surgical complications, and rates
of various types of readmission and mortality. There are more than 5,000 hospitals that reported at least
on measure during 2014, but only 1,614 hospitals with 90% measures reported. The measures are com-
puted quarterly, and are publicly available through the Hospital Compare website [8]. The high dimensional
nature of these varied measures make comprehensive inferences about hospital quality impossible without
summarizing statistics.

Discovering the topology of the hospitals is non-trivial. The features may have significant disagreement,
and not be strongly correlated across the population. To examine these relationships, one can consider linear
correlations via principal component analysis. The eigenvalues of the correlation matrix do not show the
characteristic drop off shown in linear low dimensional data sets. In fact, 76 of the 86 eigenvalues are above
1% the size of the largest eigenvalue. Previous medical literature has also detailed the fact that many of the
features don’t always correlate [9,4].

For this reason, there does not exist an organization for which all features are smooth and monotonically
increasing. This is why the meta-features, and organization, must be driven by minimal external expert
opinion. This observation makes the goal of our approach three fold: develop an organization of the data
that is smooth with respect to as many features as possible, build a ranking function f that agrees with
this organization, and minimize the amount of external input necessary to drive the system.

Our goal is more than just learning a ranking function f on the set of hospitals X. We are trying to
characterize the cohort of hospitals and organize the geometry of the data set, and learn a multi-dimensional
embedding of the data for which the ranking function is smooth. This gives an understanding of the data
that doesn’t exist with a one dimensional ranking function. Specifically, we are looking for meta-features of
the data in order to build a metric p : X x X — R™T that induces a small Lipschitz constant on the function
f, as well as on features measured by CMS.

An example of this organization is shown in Fig. 1. The organization is generated via our algorithm of
expert driven functional discovery, the details of which are found in Sections 2 and 3. The colors in each
image correspond to three notable CMS features: risk standardized 30 day hospital-wide readmission, patient
overall rating of the hospital, and risk standardized 30 day mortality for heart failure. This organization
successfully separates hospitals into regimes for which each feature is relatively smooth.

Our organization is accomplished via a three step processing of the data. First, we build an initial
organization of the data via coupled partition trees [6], and use this partitioning to generate pseudopoints
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Fig. 2. Two sets of organizations with similar neighborhood structure. The representations used to generate these embeddings are
fundamentally different, with the right figure using 5x as many features as the left, and with features being generated with vastly
different algorithmic parameters.

that accurately represent the span of the data at a coarse scale. This step is explained in Section 2. This
organization is analyzed and used as an input to a series of stacked neural nets, which learn invariant
representations of the data and separate disparate clusters of points. This step is explained in Section 3.
See [2] for a review of stacked neural nets and deep learning. Finally, we build a metric on that topology by
taking a local Mahalanobis distance on the stable neighborhoods (i.e. local z-scoring) [10,15]. This is done
in Section 3.3, and guarantees that the induced metric is homogeneous. This means that, if U, denotes the
neighborhood of a point z, then p(x,y) for 2,y € U, measures the same notion of distance as p(a’,y’) for
'y € Uy

By taking a local z-scoring of the features, we generate an organization that is dependent only on the
neighborhoods U,, rather than being dependent on the specific representations used. Fig. 2 shows the
organizations of the hospitals generated by algorithms with two very different parameter sets which, after
z-scoring the neighborhoods, generate similar embeddings. More details about this embedding can be found
in Section 4.2.2.

It is important to note that our use of stacked neural nets is different from traditional deep learning
applications. We discuss these differences in Section 3.4. The purpose of using deep learning and organizing
of the generated representations is to create a notion of fine neighborhoods between points; neighborhoods
where the number of neighbors scales smoothly with the distance metric.

We then examine and validate our algorithm on the CMS Quality Initiative features in Section 4.

2. Information organization and expert driven functional discovery
2.1. Training on data with full knowledge
Let the data matrix be
M = [vy,...,vn], (1)

where v; € R™ is a vector of observations describing the ith data point. Each v; is allowed to have arbitrarily
many missing entries. Define supp(v;) = {k € {1,...,m} : v; , is observed}.

Due to the missing entries, calculating an affinity between every two points v; and v; is not necessarily
possible, given that the intersection of the supports of their known values may be small or even disjoint.
For this reason, we begin by restricting ourselves to points v;; that have at most 7 missing entries. We shall
begin by organizing the set of points Q = [v;,, ..., v;,].

To gain an initial understanding of the geometry of €, we consider the cosine affinity matrix A where

<vij ) vik>

Ajk = = (2)
75 o, o,
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where the inner product is calculated only on the entries in supp(v;;) Nsupp(v;,). By definition of €, this
set contains at least m — 21 known values.

The cosine affinity matrix serves as a good starting point for learning the geometry of 2. However, we
must develop a way to extend any analysis to the full data M. For this reason, we partition both the data
points and the observation sets of €2. This gives us two advantages: partitioning the data points captures the
ways in which different observations may respond to different subsets of €2, and partitioning the observation
sets into similar question groups gives a method for filling in the missing observations in M.

We construct a coupled geometry of €2 using the algorithm developed in [6]. The initial affinity is given
by the cosine affinity matrix A, and the iterative procedure is updated using Earth Mover Distance [13].

Remark: Let the final affinity matrix be called A : M x M — [0,1]. Let the eigenpairs of A be called
{(N\iy i)} with 1 = X9 > ... > Ay. Then the organization of M is generated by

O (z) = [A61(2), ... N\gdba(@)], & € M,

where d is the dimension of the underlying manifold.
2.2. Filling in missing features

Let Z,s be the hierarchical tree developed on the observations in R™ from Section 2.1. Let the levels be
21, ..., ZF, with the nodes for level [ named 27, ..., %Tf(l). Let v; & €2 be a data point with the entry v; x
missing. In order to add v; into the geometry of Q, we must estimate the entries in (supp(v;))“ to calculate
an affinity between v; and other points.

Tobs gives a tree of correlations between the observations. This allows us to fill in v; j, with similar, known
entries. Find the lowest level of the tree (most strongly correlated questions) for which observation k € <%”jl

and dm € %l such that v; ,, is known. Then the estimate of v; ;, satisfies

1
E‘,k = Ui7m. (3)

l
meX;

Along with an estimate of v; x, (3) also gives a level of uncertainty for the estimate, as smaller [ (i.e.
coarser folders) have lower correlation and give larger reconstruction error.

2.8. Ezpert driven function on the folders

Let Jpoints be the hierarchical tree developed on the data points in © from Section 2.1. Let the levels
be 2, ..., 2L, with the nodes for level | named 27, ..., Bt”nl(l). As the partitioning becomes finer (i.e.
approaches L), the folders contain more tightly clustered points. This means that the distance from any
point to a centroid of a folder becomes smaller as the partitioning becomes finer.

Fix the level [ in the tree. The centroids of these folders can be thought of as “types” of data points, or
pseudopoints. There are two major benefits: there are few pseudopoints relative to n that span the entire
data space, and the pseudopoints are less noisy and more robust to erroneous observations.

These pseudopoints are the key to incorporating expert knowledge and opinion. The pseudopoints are
easier and much faster to classify than individual points, as there are a small number and they are less noisy
than individual points. Also, the pseudopoints effectively synthesize the aggregate performance of multiple
hospitals. The classifications generated by experts can be varied, anything from quality rankings to discrete
classes to several descriptive features or “meta-features” of the bins. Specifically, the user assigns a set of
classes ¥ and a classification function g : 2 — % such that

Vx € ﬁt”jl, gx) =y, €F. (4)
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This function is understood as a rough estimate, since the classification is applied to all x € %”jl even though
the class is determined only from the centroid of 3?,3—1.
The function generates a metric p :  x 8 — RT that has dependencies of the form

plz,y) = f (& —y;9(x),9(y)). [:R"xExE >R (5)
This metric needs to satisfy two main properties:

1. 3dp such that p(x,y) < egist if ||z — y|| < 6 for § < §p and some norm || - ||, and
2. P(%?J) > €class if g(.’L') 7é g(y)

A metric that satisfies these two properties naturally relearns the most important features for preserving
clusters while simultaneously incorporating expert knowledge to collapse non-relevant features. We learn
this function using neural nets, as described in Section 3.

3. Deep learning to form meta-features

There are entire classes of functions that approximate the behavior of p in (5). For our algorithm, we
use neural nets for several reasons. First, the weight vectors on the first layer of a neural net have clear,
physical interpretation, as the weight matrix can be thought of as a non-linear version of the weight vectors
from principal component analysis. Second, current literature on neural nets suggest a need for incredibly
large datasets to develop meaningful features on unsupervised data. Our algorithm provides a way to turn
an unlabeled data set into a semi-supervised algorithm, and incorporates this supervision into the nodes of
the neural net. This supervision appears to reduce the number of training points necessary to generate a
non-trivial organization. Past literature has used radial basis functions as the non-linear activation for deep
learning [5], as well as for analysis of the structure of deep net representations [11].

3.1. Neural nets with back-propagation of rankings

For our algorithm, we build a 2 layer stacked autoencoder with a sigmoid activation function, with a
regression layer on top. The hidden layers are defined as

WO(@) = o (80 + WORID @)

with o : R — [0, 1] being a sigmoid function applied element-wise, and h(®)(z) = z. The output function
f(z) is logistic regression of these activation units

f(2) =@ + VA (2)).

The reconstruction cost function for training our net is an L? reconstruction error

€= =3 lgle) — )P ()

The overall loss function we minimize, which combines the reconstruction cost with several bounds on the
weights, is

L= 123 gt — S+ 3 (W)
i=1 TR
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Note that we rescale g if it takes values outside [0, 1]. We then backpropagate the error by calculating %
w;

and % and adjusting the weights and bias accordingly. See [12] for a full description of the algorithm. ’
w;

Definition 3.1. The deep neural net metric on €2 with respect to an external function f is defined as

ponn(z,y) = R (z) — R (y)].

Lemma 3.2. A deep neural net with a logistic regression on top gemerates a metric ppyn that satisfies
Condition 1 from (5) with a Lipschitz constant of |[W1||/4 with respect to Euclidean distance. The output
function f also has a Lipschitz constant of ||W1||||[Wa||||V]|/64 with respect to Euclidean distance.

The proof of Lemma 3.2 follows immediately from the fact that o(«) has bounded derivative and simple
norm inequalities.

Lemma 3.3. A two layer neural net with a logistic regression on top creates a function f which satisfies a
variant of Condition 2 from (5), namely that

Ex (@) = f@)I) 2 Ex (lg(@) - 9w)]?) -2 (mfm) c, (7)

where S = #{(z,y) € A x Q:g(x) # g(y)}, Si = #{y € Q: g(y) # i}, and Ex is the expected value over
the set S.
Moreover, the deep neural net ppnn generated also satisfies

9 1 o) — 2y maX;cg S; - n
Ex (1f(x) = fFw)I*) > (TLZQIW@-I) []E¢ (lg(z) = g())*) —2 (75 )C] : (8)

Proof. We have

1f(@) = FWI? = (@) = g(x) = fy) + 9(y) + g(z) = 9(v)|?
> llg(x) = g@W)1* = (If(x) = g@)I* + 1 f () — g)?) -

Unfortunately, because (6) is a global minimization, we cannot say anything meaningful about the difference
for individual points. However, we do have

Yo @ - fwIPz D> lg@ —aw)lF = Y- (@) = 9@+ 1) - 9w)?)

9(z)#9(y) 9(z)#9(y) 9(z)#9(y)
= > lgl@) =gl =2 #{y: 9() # g)} - | f(2) - g(x)]?
g(z)#9(v) zeQ
> Y o)~ o)l - 2 (max o o) £} ) nC
g(z)#9(v)

where #{y : g(y) # i} denotes the number of elements in this set. Let S = #{(x,y) € Q x Q: g(z) # g(y)}
and S; = #{y € Q: g(y) # i}. Then

E. (If(x) = fF@)I?) = Ex (lo() — 9@)[1?) — 2 (%) c
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This means that by minimizing C, we are forcing the separation of points with different initial ranking to
be as large as possible. This enforces Condition 2 of (5) in the aggregate over all such points.
The scaling of W for ppn N is a simple application of Lemma 3.2. O
=2 K

3.2. Heat kernel defined by ppnN

The weights generated by the neural net represent “meta-features” formed from the features on 2. Each
hidden node generates important linear and non-linear combinations of the data, and contains much richer
information than a single question or average over a few questions.

A problem with neural nets is that they can be highly unstable under parameter selection (or even random
initialization). Two identical iterations can lead to completely different weights set. Along with that, back
propagation can force points into isolated corners of the cube in [0, 1]*.

For this reason, we rerun the neural net K times with varied random seeds, number of hidden layers,
sparsity parameters, and dropout percentages. After K iterations, we build the new set of features on points
as Q*(x) = [hgl)(z), ey hgp (z)]. This defines an adjacency matrix on A with affinity defined between two
points as

Az, y) = e 1@ W /e, (9)

Along with that, the final ranking function on M comes from f(z) = + Zfil fi(x). Note that ||Q*(z) —
* K
Q*(y)|I* = Xoiz1 pon i, y)*.
The expert driven heat kernel defined in (9) generates an embedding ® : Q — R? via the eigenvectors
() = [M1(), ... Aja(@)]-
For each neural net h;, we keep the number of hidden layers small relative to the dimension of the data.
This keeps the net from overfitting the data to the initial organization function g.

8.8. Standardizing distances to build an intrinsic embedding

While this generates a global embedding based off local geometry, it does not necessarily generate a
homogeneous space. In other words, ||®(z) — ®'(y)|| = ||®'(2’) — ®'(y')|| does not necessarily guarantee
that = and y differ by same amount as 2’ and g’. This is because Q*(z) and Q*(y) may differ in a large
number of deep net features, whereas Q*(z’) and Q*(y’) may only differ in one or two features (though
those features may be incredibly important for differentiation).

For this reason, we must consider a local z-score of the regions of the data. For each point ®!(x), there
exists a mean and covariance matrix within a neighborhood U, about x such that

This generates a new whitened distance metric

de(z,y) = = [(P(x) — pe) — (' (y) — py)] " (L + 2] [(@"(2) — p1a) — (*(y) — 11y)] » (10)

DN | =

where £t is the Penrose-Moore pseudoinverse of the covariance matrix.
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One can generate a final, locally standardized representation of the data via the diffusion kernel
W(SC, y) = eidt(w’y)/ﬁv

and the low frequency eigenvalues/eigenvectors of W, which we call {(s;,%;)}. The final representation is
denoted

Oa(@) = [5iv1 (@), oy si¢0a()]. (11)

The embedding ®,,(z) can be extended from the analysis on © to the rest of the points in M via a
simple Nystrom extension [3]. New point « is fed through the collection of networks to generate Q*(z), use
Nystrom to calculate ®'(z), and finally use Nystrom again to calculate the final embedding ®¢,,(x).

3.4. Different approach to deep learning

Our algorithm, as we will discuss in detail in Section 3, uses the meta-features from stacked neural
nets in a way not commonly considered in literature. Most algorithms use back propagation of a function to
fine-tune weights matrices and improve the accuracy of the one dimensional classification function. However,
in our algorithm, the purpose of the back propagation is not to improve classification accuracy, but instead
to organize the data in such a way that is smooth relative to the classification function. In fact, we are most
interested in the level sets of the classification function and understanding the organization of these level sets.

At the same time, we are not building an auto-encoder that pools redundant and correlated features in
an attempt to build an accurate, lossy compression (or expansion) of the data. Due to the high level of
disagreement among the features, non-trivial features generated from an auto-encoder are effectively noise,
as we see in Section 4.2. This is the motivation behind propagating an external notion of “quality”.

4. Expert driven embeddings for hospital rankings
4.1. Hospital quality ranking

For preprocessing, every feature is mean centered and standard deviation normalized. We begin by
building a questionnaire on the hospitals. Our analysis focuses on the 2014 CMS measures. We put a
2x weight on mortality features and 1.5x weight on readmission features due to importance, because the
outcome measures describe the tangible results of a hospitalization are particularly important for patients.
The questionnaire learns the relationships between the hospitals, as well as the relationships between the
different features. In doing this, we are able to build a partition tree of the hospitals, in which hospitals in
the same node of the tree are more similar than hospitals in different nodes on the same level of the tree. As
a side note, the weighting on mortality features only guarantees that the intra-bin variance of the mortality
features is fairly low.

For the ranking in this example, we use the 5th layer of a dyadic questionnaire tree, which gives 32 bins
and pseudohospitals. Experts on CMS quality measures rank these pseudohospitals on multiple criteria and
assign a quality score between 1 to 10 to each pseudohospitals. We use an average of 50 nodes per layer of
the neural net. Also, we average the results of the neural nets over 100 trials. We shall refer to the final
averaged ranking as the deep neural net ranking (DNN ranking) to avoid confusion.

4.2. Embedding of hospitals

The left image of Fig. 3 shows a final embedding of the subset of hospitals used in training the neural
net, as well as the full set of hospitals. It is colored by the quality function assigned to those hospitals.
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Fig. 3. (left) Embedding of hospitals with at most 7 missing entries. (center) Embedding of full set of hospitals. Red corresponds to
top quality, blue to bottom quality. (right) Quality function assigned for hospital versus average quality across the neighborhood.
(For interpretation of the references to color in this figure, the reader is referred to the web version of this article.)

Fig. 4. Embedding of 2 without back propagation of expert driven hospitals rankings. Coloring comes from quality rating function.
Notice that without back propagation the embedding is effectively noise compared to hospital quality.

While the goal of the hospital organization is to determine neighborhoods of similar hospitals, it is also
necessary for all hospitals in a shared neighborhood to share a common quality rating. Fig. 3 plots the
quality function assigned to the hospitals against the weighted average quality function of its neighborhood,
where the weights come from the normalized affinities between the given hospitals and its neighbors. The
strong collinearity demonstrates that the assigned quality function is consistent within neighborhoods of
similar hospitals.

To demonstrate that the expert input back propagation is necessary for a viable ranking and affinity, we
include Fig. 4. Here, we build the same diffusion map embedding, but on the features of the autoencoder
before back propagation of the expert input function. Due to the small number of data points relative to
the number of features, an untuned autoencoder fails to form relevant meta-features for the hospitals.

4.2.1. DNN satisfies conditions for p

Fig. 5 verifies that the back propagation neural net satisfies Condition 1 of p from (5). The left plot
shows the ranking of each hospital plotted against the average of its ten nearest neighbors under Euclidean
distance between hospital profiles. The fact that the average correlates with the original quality rating shows
that the embeddings of the hospitals remain close if they are close under Euclidean distance.

Fig. 5 shows that the back propagation neural net satisfies Condition 2 of p from (5). The histogram in the
center shows the DNN affinity between hospitals with different initial quality ratings (i.e. when g(z) # g(y)).
To satisfy Condition 2, g(z) # g(y) = p(x,y) > €ciass (1€ A(z,y) < 1 —¢€). Also, for the histogram on
the right we define

P4(t) = Pr(A(z,y) > t:g(x) #9(y)), P=(t)=Pr(A(z,y) >1t:g(z) =g(y)).

P(t)
P_(t)
of the initial ranking on the final affinity.

The histogram on the right shows . The smaller the ratio as ¢t approaches 1, the stronger the influence
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from a given point to its neighborhood. Metrics are generated in same fashion: K(z,y) = e~ llz=vl*/97 Here o = % Yool —yall,
where y, is the ith closest neighbor of x.

Moreover, we can compare the contraction guaranteed by (8). For the hospital ratings,

maX;c¢ Sz' n

Ex (Ilf (@) = F@)I?) = 244, B (|lg(=) — g(y)II?) = 3.36, 5

= 1.22, C' = 0.9959,

which makes the right hand side of (8) equal 2.15.
Fig. 6 indicates that the DNN metric from (5) gives a better notion of small neighborhoods than a simple
Euclidean metric. Each metric defines a transition probability P(x,y). For each point x, the plot finds
. . -1
minimize #I subject to % P(x,y) > (12)

N =

It is important for (12) to be small, as that implies the metric generates tightly clustered neighborhoods.
As one can see from Fig. 6, the DNN metric creates much more tightly clustered neighborhoods than a
Euclidean metric. Fig. 6 gives summary statistics of these neighborhoods for varying diffusion scales.

Another positive characteristic of our DNN embedding is the reduced local dimension of the data. Con-
sider the eigenvalues {S!}7  of the diffusion kernels A;, where the Markov chain A; describes either comes
from the Euclidean metric or the DNN metric. These eigenvalues give us information about the intrinsic
dimension of the data, as small eigenvalues do not contribute to the overall diffusion. To compare the eigen-
ﬁ, as this is the
average time it takes to diffuse across the system. Cutting off the eigenvalues to determine the dimension
is fairly arbitrary without a distinct drop off, but an accepted heuristic is to set the cutoff at

values across different diffusion kernels, we normalize the eigenvalues by setting ¢ =
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Table 1

Confusion matrix between initial ranking on
hospital bins and final ranking from neural net.
For simplicity, rankings have been rounded into
quartiles for purposes of confusion matrix.

Final Rank

8 11 0 0
First rank 15 730 129 0
0 97 330 219
0 0 27 48

dim(A4;) = max{d € N: 53 > 0.01}.

With this definition of dimension, dim(A;) = 7 for the DNN metric embedding, whereas dim(A;) = 14 for
the Euclidean metric embedding.

4.2.2. Dependence on initial rankings

Another important feature of a ranking algorithm is its robustness across multiple runs. To demonstrate
stability of the neural net section of the algorithm, we run multiple experiments with random parameters
to test the stability of the quality function. Fig. 2 shows the rankings for all 1,614 hospitals across multiple
runs of the 100 iterations of the neural net. Given the strong similarity in both quality rating and overall
organization, it is clear that the average over 100 iterations of a neural net is sufficient to decide organization
of the hospitals.

It is also important to examine the dependence our initial binning and ranking has on the final ranking
of the hospitals. Clearly the initial binning is only meant to give approximate ranks, so a strong dependence
on these rankings would be problematic. Table 1 shows the confusion matrix between the initial hospital
rankings and the final rankings assigned from the neural net. The purpose of the neural net second step is
to reclassify hospitals that are binned incorrectly due to spurious correlations.

5. Conclusion

We introduced an algorithm for generating new metrics and diffusion embeddings based off of expert
ranking. Our algorithm incorporates both data point geometry via hierarchical diffusion geometry and non-
linear meta-features via stacked neural nets. The resulting embedding and rankings represent a propagation
of the expert rankings to all data points, and the resulting metric generated by the stacked neural net gives
a Lipschitz representation with respect to Euclidean distance that learns important and irrelevant features
according to the expert opinions and in automated fashion.

Although the ranking algorithm seems tied to the process of expert rankings of hospitals, the underlying
idea of generating metrics in the form of (5) and propagating first pass rankings to the rest of the data, is
quite general. For example, this method could be used to propagate sparsely labeled data to the rest of the
dataset, with expert bin rankings replaced by the mode of the labeled data in the bin.

This method also touches on the importance of incorporating data point organization into the neural
net framework when dealing with smaller data sets and noisy features. Without the expert driven function
to roughly organize the data points, the stacked autoencoder fails to determine any relevant features for
separation, as shown in Fig. 4.

We will examine the implications of our hospital ratings on health policy, as well as discuss the various
types of hospitals in our embedding, in a future paper. Future work will also examine further examination of
the influence of data point organization on neural nets and the generation of meta-features. Also, it would
be interesting to examine other applications of propagation of qualitative rankings and measures.
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