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This article synthesizes and extends discussions held during an international meeting on ‘‘Surveillance for Decision Making:

The Example of 2009 Pandemic Influenza A/H1N1,’’ held at the Center for Communicable Disease Dynamics (CCDD),

Harvard School of Public Health, on June 14 and 15, 2010. The meeting involved local, national, and global health

authorities and academics representing 7 countries on 4 continents. We define the needs for surveillance in terms of the key

decisions that must be made in response to a pandemic: how large a response to mount and which control measures to

implement, for whom, and when. In doing so, we specify the quantitative evidence required to make informed decisions. We

then describe the sources of surveillance and other population-based data that can presently—or in the future—form the

basis for such evidence, and the interpretive tools needed to process raw surveillance data. We describe other inputs to

decision making besides epidemiologic and surveillance data, and we conclude with key lessons of the 2009 pandemic for

designing and planning surveillance in the future.

The first year of the 2009-10 influenza A/H1N1
pandemic was the first test of the local, national, and

global pandemic response plans developed since the re-
emergence of human cases of avian influenza H5N1 in
2003. The plans specified that response decisions be based
on estimates of the transmissibility and, in some cases, the
severity of the novel infection. Although public health
surveillance provided a critical evidence base for many de-
cisions made during this phase, its implementation also
revealed the practical challenges of gathering representative
data during an emerging pandemic1 and showed that such
decisions, with their significant public health and economic

consequences, must often be made before many key data
are available.2

In this article, we reflect on the nature and timing of de-
cisions made during the course of the first year of the pan-
demic and on the corresponding urgent need to gather
surveillance data and process it into useful evidence. Our goal
is to suggest how surveillance systems can be improved to
provide better, more timely data to estimate key parameters
of a future pandemic, with the goal of improving manage-
ment of that pandemic. We also attempt to identify the
human and technical capabilities needed to process and in-
terpret these data to maximize their value for decision makers.
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While we cite examples from many countries, we focus to
some extent in this article on the United States experience.
More generally, no attempt has been made to be exhaustive
in citing the literature, which includes more than 2,000
references with just the keywords ‘‘H1N1 AND surveillance’’
between the start of the pandemic and the end of 2010.

We use the term surveillance here to encompass ongoing
monitoring of disease activity and gathering of clinical and
epidemiologic data that define the disease, such as com-
parative severity in different risk groups. In section 1 we
describe the key decisions made during the 2009 pandemic,
emphasizing early decisions about matters of broad strategy
and tactics,3 and their evidentiary inputs. Section 2 iden-
tifies sources of surveillance data. In section 3 we discuss
methods of processing surveillance data into usable evi-
dence, and in section 4 we examine inputs, other than
surveillance or epidemiologic inputs, that can inform, or
indeed disrupt, public health decisions. Section 5 concludes
with lessons learned for future pandemics.

1. Pandemic Response Decisions and

Their Evidentiary Inputs

1.1 Decision to Respond
As a novel influenza virus emerges, the first set of decisions
required of global, national, and local authorities involves
whether to progress beyond routine monitoring and devote
resources to a large-scale response. The World Health
Organization (WHO) and ProMED-mail together report
more than 3,000 alerts of human infectious diseases an-
nually.4 Consequently, devoting extraordinary public
health resources to tracking and preparing a response must
depend on the estimated risk that the outbreak will reach a
given jurisdiction and cause widespread, serious illness.
Unfortunately, the extent of transmission—and therefore
the severity of the disease—may be unclear during the early
stages of a pandemic. For example, infection in Mexico was
already widespread by late April 2009 when the link was
made between the unusual cases of pneumonia reported in
March and April and a novel strain of influenza.5,6 Spe-
cialized laboratory tests and epidemiologic follow-up of
individual cases ultimately provided the critical informa-
tion that confirmed the novelty of the H1N1 virus and its
presence in Mexico and U.S. border states.

1.2 Overall Scale of Response
Once a novel strain of influenza establishes widespread
human-to-human transmission, global spread will be rapid,
warranting an escalated response. This may include deploying
or reassigning public health workers to pandemic-related ac-
tivities, acquiring and deploying supplies (such as antivirals,
antibiotics, vaccines, ventilators, and personal protective
equipment), and commencing nonpharmaceutical interven-

tions (eg, school closures, border screenings). For each of these
measures, decision makers must balance the costs against the
likely benefits, both of which depend on the epidemiologic
characteristics of the novel infection and on the expected scale
of damage arising from an unmitigated pandemic—estimated
as the number of individuals infected multiplied by the
probability that each infection will lead to severe illness, hos-
pitalization, or death. Predicting the timing of such events
could also inform decision making. Control measures may be
cost-effective, for example, if they avert a sharp, acute increase
in demand on healthcare services in a population, but less so if
an unmitigated pandemic were less peaked and hence less
disruptive.

Rapidly generated transmissibility and severity estimates
are essential for predicting the scale and time course of a
pandemic.7 With influenza, most important are measures
of severity per infected individual—that is, the probability of
death, hospitalization, or other severe outcome. Histori-
cally, influenza pandemics have led to symptomatic infec-
tion in between 15% and 40% of the population.8 This
variability is minor compared with variation in severity per
symptomatic case as measured, for example, by the case-
fatality ratio, which varies by orders of magnitude among
pandemics. Thus, a key task for surveillance early in a
pandemic is to estimate the per-infection severity of the
new pandemic strain precisely enough to define the ap-
propriate scale of response. This proved challenging in
2009 up until late summer, because early estimates indi-
cated an uncertainty ranging from the mildest possible
pandemic envisaged in preparedness planning to a level of
severity requiring highly stringent interventions.5,9-12 As we
discuss further in section 4.1, another form of uncertainty
was whether the severity, drug-sensitivity, or other charac-
teristics of the infection might change as the pandemic
progressed; unlike the first form of uncertainty, this ques-
tion could not be resolved using better data.

As a pandemic unfolds, surveillance data and epidemi-
ologic studies may provide early indications of the impact
of public health interventions. Ideally, data on the eco-
nomic costs (including indirect costs for socially disruptive
measures such as school dismissals) and the public health
and economic benefits of interventions would be formally
weighed within a cost-benefit or cost-effectiveness frame-
work to inform policy decisions. Yet, we know of no such
evaluations having been undertaken during a pandemic.
Instead, more informal comparisons have typically in-
formed decision making, including in 2009.

1.3 Measures to Protect Individuals
Another set of decisions involves interventions to protect
individuals against infection and against severe morbidity
or mortality following infection. Guidelines or policies are
needed to help clinicians and health systems determine whom
to test for infection, whom to treat and under what circum-
stances, whom to advise on early treatment when a high risk of
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complications exists, and whether to make antiviral drugs
more readily available for such individuals.13 Decisions about
how much vaccine to purchase are based in part on the se-
verity of infection in population subgroups and on ensuring
adequate supplies for at least those in greatest need.

Comparative severity of infection is estimated from risk
factor studies, in which the frequency of particular demo-
graphic characteristics or particular comorbidities in the
general population is compared with the frequency among
people with severe outcomes (death, ICU admission, hos-
pitalization).14-16 Ideally, one would also have estimates of
the effectiveness of prevention and treatment in the high-risk
groups, since prioritizing groups for intervention presup-
poses that the interventions will help them. In practice, data
on intervention effectiveness in high-risk groups may be
difficult to obtain in time, but may be inferred from expe-
rience with seasonal influenza,14,17 despite epidemiologic
differences between pandemic and seasonal disease.

1.4 Measures to Slow Transmission
Decisions also must be made about interventions to prevent
transmission. In the early phases of a pandemic, these may
include screening travelers as they enter or leave a jurisdiction
and isolating those who are symptomatic. Mathematical
models indicate that such measures are unlikely to delay global
spread of influenza by more than about 2 weeks.18-20 In 2009,
some jurisdictions judged this delay adequate to justify
stringent border controls, and evidence shows that the con-
trols measurably delayed the start of local transmission of the
H1N1 virus in several regions.21 Once community trans-
mission is established, however, the measures are less useful, so
a key role for surveillance is to inform decision makers about
the extent of infection within their jurisdictions.

Other nonpharmaceutical interventions to slow trans-
mission in a community include school dismissals and
cancellation of public gatherings; these measures are often
undertaken reactively based on transmission in an individual
school or district. These decisions specifically rely on fine-
grained local data (see sidebar: Local Surveillance Data).

Vaccination can also be used to slow transmission and
protect nonvaccinated people. Appropriately targeting
vaccines for this purpose requires identifying the groups
most likely to become infected and then infect others in the
population.22,23 Although school-age children play a key
role in this process, their importance often declines as a
pandemic wave progresses. Changes in the age distribution
of cases can help track this trend.22

1.5 Investment Allocation
Decision makers must allocate limited resources between
measures to protect individuals and measures to reduce
transmission. In addition to money, resource limitations
can involve public health personnel, public attention, and
supplies. For example, the supply of antiviral drugs is

limited, as is the virus’s susceptibility to them, which can
also be considered a limited ‘‘resource.’’24 Consequently,
using antivirals to slow transmission may hinder their fu-
ture use for treatment.19,25

Limited vaccine supplies create a trade-off between vac-
cinating those at highest risk and those most likely to
transmit infection (see sidebar: Prioritizing Vaccination).
The key questions for prioritization are: Who is at highest
risk, and how readily can they be identified? On the other
hand, who are the transmitters? When vaccine becomes
available in substantial quantities, will transmission be
ongoing at a high level? Will the group driving transmission
early in the pandemic (eg, schoolchildren) still be the key
driver, or will susceptible members of that group have been
largely exhausted, making their vaccination less effective?22

Predictions of the likely timing and magnitude of the
peak (or peaks) of disease incidence would also facilitate
response planning and resource allocation by anticipating
likely periods of intense stress on healthcare providers.
Optimally targeting vaccination depends on the number of
doses available prior to the peak of transmission (see side-
bar: Prioritizing Vaccination). Raw surveillance data by
definition provides information about the past, not pre-
dictions of the future course of the pandemic. We argue in
section 3.4, however, that carefully designed surveillance
programs, combined with mathematical and statistical
modeling to infer the number of infected individuals, could
provide considerable insight and help decision makers
prioritize particular scenarios.

Decisions about prioritizing interventions will need to
balance projected benefits of prioritizing particular groups
against important considerations of logistics and public
acceptance. As in all matters of public health prioritization,
the calculation of projected benefits depends on one’s as-
sumptions about the relative value of preventing morbidity
versus mortality, and about the relative value of preventing
mortality in various groups. This question has been heavily
debated,26 and, in the case of pandemic influenza, it is clear
that unless vaccines are so plentiful that transmission can be
completely or nearly halted,27 policies to minimize total
mortality may differ from those to minimize years of life lost
or disability-adjusted years of life lost.28-30 Moreover, efforts
to target particular groups may result in underuse of avail-
able supplies, be difficult to implement, or provoke negative
public response if some individuals disagree with the choice
of whom to prioritize. In the U.S., a public engagement
process in 2006 documented public preferences for groups
that should be prioritized in the event of a pandemic.31

1.6 Timing of Responses
Finally, decision makers must determine when to set pol-
icies in motion, when to change existing policies, and which
decisions to delay. A key lesson of the 1976 swine flu
outbreak was that certain decisions can and should be de-
layed until evidence accumulates.32 Decisions that cannot
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Local Surveillance Data: When Is It Necessary?

In an ideal situation, every public health authority could
access its own high-quality, local data to synthesize into
evidence relevant for its disease control decisions. Gath-
ering, processing, and interpreting data, however, cost
money, time, and expertise, and few jurisdictions
worldwide can undertake these activities independently.
Decision makers must instead rely on a heterogeneous
mix of local, regional, and global data sources.

Local authorities, particularly elected officials, may
want data on the progress of the local epidemic for a
variety of reasons. In addition, from a public health and
evidence-based decision-making perspective, 3 basic ar-
guments favor geographically distributed surveillance.

First, infection may remain geographically focal for
weeks to months. In 2009, transmission remained focal
within Mexico for at least 1 month, probably longer.
Once the virus spread to other countries, transmission
was again initially confined to certain areas. When early
transmission is geographically circumscribed, the first
estimates of key parameters that serve to inform decision
makers worldwide must rely on data from areas of on-
going transmission. In the UK, even by the end of the
summer 2009 wave of transmission, seroprevalence was
higher in London and the West Midlands than else-
where.65

Second, even when infection spreads virtually every-
where, its characteristics may differ across regions, re-
sulting in different local priorities for control. In 2009,
many risk factors for severe outcome—race/ethnici-
ty,45,135 income,35 comorbidities,14,135 healthcare ac-
cess,14,135 and exposure to bacterial co-infections76—
varied geographically on scales ranging from neighbor-
hood to continent. Global awareness of these and other
risk factors depends on having some form of surveillance
available in populations where risk factors are concen-
trated. Awareness of local disparities in infection rates or
severe disease35,71 within a jurisdiction can also improve
resource allocation.

Third, some decisions, such as school dismissals (and
reopenings) in response to within-school transmission,
require very detailed, real-time local data. During the
2009 pandemic, these decisions had to be made based on
limited data with known biases. One example is school
absences, which can be due either to influenza infection or
to fear of acquiring influenza at school. More generally,
decisions about specific tactics to control transmission in

particular settings—such as schools, hospitals, or other
institutions, or aircraft or other vehicles—necessarily rely
on local data. Surveillance to trigger and guide such in-
terventions has been called ‘‘control-focused’’ surveil-
lance, in contrast to the ‘‘strategy-focused’’ surveillance3

that is discussed throughout most of this article.
These factors favoring local data must be balanced

against resource limitations and competing public health
priorities. For many questions—specifically, those for
estimating overall severity—high-quality data from
within a country or a group of countries with broadly
similar health systems are likely adequate and often more
reliable than local data from an individual jurisdiction. As
noted in section 3.1, sharing of data across hemispheres
can be particularly valuable, given the seasonality of
transmission.86,87

To avoid making misleading comparisons, consumers
of local surveillance data should also know the factors that
differ among jurisdictions. In the spring-summer of
2009, the city of Milwaukee, Wisconsin, confirmed about
3 times as many cases as did New York City, even though
New York has about 8 times the population. This was due
not to a greater incidence in Milwaukee, but to different
decisions regarding whom to test. Milwaukee tested many
mildly ill individuals, while New York City focused on
hospitalized cases.44 Clearly, without knowledge of sur-
veillance differences, it is easy to misinterpret differences
in case numbers.

The above considerations suggest that to prepare for
future pandemics:

� decision makers should be educated about the limita-
tions of local data and the cost-benefit trade-off of
gathering high-quality data at the local level;

� national public health agencies should maintain the
epidemiologic and laboratory capacity to study focal
outbreaks, including those in areas that lack high-
quality routine surveillance or local capacity for such
investigations; and

� high-quality routine surveillance systems should be
geographically distributed within and among countries
to improve the likelihood that some systems will be in
place in populations that experience early waves of in-
fection. This approach should improve the timeliness
of estimates of key parameters for national or interna-
tional use.
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wait can be revised in light of new evidence on severity and
intervention effectiveness. During the 2009 pandemic, for
example, early decisions to close schools in the U.S. in April

were quickly revised as evidence grew to suggest an illness
severity in the U.S. lower than that first reported in Mexico.
(Later, it became clear that the severity in Mexico was also
lower than it initially appeared.33)

2. Sources of Surveillance and

Epidemiologic Data

This section describes data sources—currently or poten-
tially available—that provide the evidentiary basis for the
decisions outlined in section 1 and shown in Figure 1.

2.1. Confirmed Cases
Awareness of the novel influenza strain first arose from its
detection in young patients in California who presented
with influenzalike illness (ILI) and were tested for influenza
as part of routine surveillance. Soon after, laboratory data
on cases of severe atypical pneumonia in young adults in
Mexico confirmed the presence of the pandemic strain of
H1N1 (pH1N1). These early cases confirmed that pH1N1

Prioritizing Vaccination

Vaccines have 2 effects: direct protection of the vaccinated
individual against infection and its consequences and
indirect protection of the population, in which certain
individuals are vaccinated to reduce their risk of be-
coming infected and subsequently passing on the in-
fection. The ability of immune individuals to protect
others against infection is often called herd immunity.

When vaccine availability is limited, the choice of
whom to vaccinate first is partly a strategic decision to
focus on either direct protection or on herd immunity.
Table 1 describes key differences in these strategies and
in the information required to implement them.

Table 1. Considerations in the Use of Vaccines for Direct Protection of Vulnerable People vs. Herd Immunity

Strategy

Direct Protection Herd Immunity

Goal To protect the vaccinated directly
against infection, illness, hospitalization,
or death

To protect the population (including the
nonvaccinated) against infection (and its
consequences) by reducing transmission

Criteria for who should receive
priority for vaccination

Individuals who will benefit most
from the vaccine’s effects: groups at high
per capita risk of severe outcomes
(infection risk�severity)

Individuals at high risk of becoming infected
and transmitting infection to others
(initially, schoolchildren; also, certain
healthcare workers)

Data used to identify
priority groups

Predictors of high risk of severe
outcome (eg, risk factors for death or
hospitalization, compared with the
general population)

Evidence that the vaccine is effective in
the high-risk groups (difficult to obtain
in the pandemic setting, but possible to
extrapolate from seasonal vaccines)

Incidence rate and/or force of infection
by age group22

Estimates of potentially infectious contacts
per day in different groups136,137

Factors favoring
the strategy

Convincing data on who is at highest
risk (Note: Predictors of high risk
need not be causal, only reliable
markers of high risk.)

Good immunogenicity of the vaccine
in the high-risk groups

Limited quantities of vaccine

Late availability of vaccine

High-risk groups are unknown or vaccine
has limited effectiveness in them
(eg, the elderly during seasonal influenza17)

Large supplies of vaccine available in time
to significantly reduce transmission7,22,23

Evidence available on the key transmitters
22

(Note: This may change over time, as most
affected groups become increasingly immune
and contribute less to transmission
as the epidemic progresses.)
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could cause severe lower respiratory tract infection in young
adults, a characteristic of previous pandemics.

The earliest quantitative surveillance data specific to
2009 H1N1 were daily reports of laboratory-confirmed or
probable cases of the infection. As public awareness spread
and more laboratories acquired the capacity to test for the
new virus, testing in many jurisdictions, including the U.S.,
became increasingly common, including for mild cases. By
one estimate, the fraction of cases detected in the U.S. was
increasing 10% per day during late April to early May.34

Case reports to public health officials in some countries
included age, gender, comorbidities, outcome (ie, hospi-
talization, ICU admission, recovery, or death), date of
symptom onset, geographic location, and the like. By mid-
May, however, the proportion of cases tested had declined
in the U.S. because of testing fatigue and a lack of resources
to consistently test a growing case burden.1 Similar changes
occurred worldwide, prompting WHO to recommend the
cessation of routine testing of all suspect cases. Counting
confirmed cases of hospitalized, ICU-admitted, or fatal
H1N1 infection became more feasible and thus the focus in
some systems, including the U.S. Emerging Infections
Program (hospitalizations), New York City,35,36 and the
later phases of surveillance in Hong Kong.35-37

As case counts grew, aggregate reporting replaced indi-
vidual case reports in most jurisdictions, so details of in-
dividual patients were often no longer available.
Furthermore, most symptomatic cases were not tested,
confirmed, or reported,38 and the proportion tested varied
geographically and over time.

Early in the 2009 pandemic, population-wide case
count data were useful for estimating transmissibili-
ty5,34,39-43 and served as a key input for WHO’s declara-
tion of Pandemic Phase 5 and the decision by many
countries to undertake a large-scale response. These data
were also used to make initial severity estimates,11,44,45

although biases were recognized, leading to considerable
uncertainty in the estimates. Combining case counts
among travelers to Mexico returning to their home
countries with estimates of travel volume and assumptions
about their exposure led to early estimates that the number
of confirmed cases in Mexico was several orders of mag-
nitude lower than the total number of infections.5,6 This
showed that severity was considerably lower than a simple
ratio of deaths to confirmed cases would have suggested.
Overall, however, the varied rates of testing and reporting
reduced the usefulness of case count data alone to estimate
key parameters.

Figure 1. A schematic view of the public health decisions required in a pandemic response, the evidence needed to make these
decisions in an informed fashion, and the sources of data and interpretive tools necessary to generate this evidence. The numbers under
‘‘surveillance inputs’’ follow the order of section 2. Color images available online at www.liebertonline.com/bsp

IMPROVING DECISION MAKING DURING A PANDEMIC—2009 INFLUENZA A/H1N1

94 Biosecurity and Bioterrorism: Biodefense Strategy, Practice, and Science



2.2. Syndromic Surveillance
Perhaps the most widely used sources of data for monitoring
the course of the 2009 pandemic were syndromic surveil-
lance systems, which track visits to primary care providers or
emergency departments for a defined syndrome, such as
influenzalike illness or acute respiratory illness.

Some systems, including ILINet in the U.S. and similar
systems elsewhere, routinely track seasonal and pandemic
influenza. Others, such as emergency department surveil-
lance systems, were originally designed to detect natural
disease outbreaks and acts of bioterrorism. To our knowl-
edge, the earliest appearance of the pandemic did not
trigger a quantitative alert in any of these systems, although
4 of the earliest cases in the U.S. presented at providers who
were members of ILINet and so were tested and flagged for
attention. At a later stage of pandemic spread, both the
purpose-built influenza syndromic surveillance systems and
the more general, detection-oriented systems proved very
valuable for tracking the relative level of ILI over time,
across age groups, and across geographic areas—data that
were important for many of the decisions described in
section 1. With several assumptions, ILI surveillance can be
transformed into symptomatic influenza case estimates (see
sidebar: From Syndromic Surveillance to Estimates of
Symptomatic Influenza).

Syndromic measures of ILI consultations are easy to
understand, relatively inexpensive and scalable. In the
U.S., coverage of emergency department surveillance in-
creased significantly during the pandemic because multiple
jurisdictions contributed age-stratified data to the Dis-
tribute Network,46 which was updated in nearly real-time
on the Web. Syndromic surveillance also was used to
compare trends in medically attended ILI cases in 2
neighboring jurisdictions, one of which implemented
school dismissal while the other did not, to make a nearly
real-time assessment of whether school dismissal affected
transmission.47

The 2009 experience did provide 2 clear examples where
syndromic data were misleading. The first was a brief surge
in ILI encounters observed in many syndromic systems in
the U.S. during weeks 17 and 18, coinciding with intense
media coverage of early cases and outbreaks. Syndromic
data are sensitive to changes in healthcare-seeking behavior,
and the tendency of mildly ill patients—the so-called
worried ill or worried well—to seek care during periods of
heightened concern can trigger false signals.48 In addition
to being subject to misinterpretation, these false alarms
perturb natural baseline patterns in the data, making it
more difficult to detect subsequent increases representing
real illness. In some jurisdictions during spring 2009, the
initial surge in worried well visits was still subsiding just as
ILI activity began accelerating, making these systems less
useful for detecting the onset of community-wide illness.

A second example was the temporary slowing in the
growth of ILI activity in the U.S. around week 38 (mid-

September).49 Data gathered from most U.S. regions for
that time showed the trend in consultations for ILI be-
coming almost flat over a 2- to 3-week period before ac-
celerating to reach a true peak about 4 weeks later. This
false peak remains unexplained, but it was credible at the
time because of its replication throughout the country.

2.3. Outbreak Investigations
Investigations of outbreaks in defined populations are a
classic tool of public health practice, usually designed to
discover the cause of an outbreak, identify risk factors, and
assess intervention effectiveness. In an influenza pandemic,
however, outbreak investigations offer key advantages over
routine, population-based surveillance in defining charac-
teristics of the new infection. They can identify focal
pockets of infectious transmission weeks or months before
the eventual global spread of the infection, since initial
seeding into particular geographic areas occurs with the
arrival of 1 or a few infected people, and transmission may
be concentrated in particular groups, such as schools or
universities. In the 2009 pandemic, for example, early
outbreaks were observed in contained settings such as
schools,50-53 military camps,54 and universities.55

Outbreak investigations in sufficiently large but localized
populations can also provide relatively unbiased estimates
of case severity, because severe outcomes (hospitalizations,
deaths: the numerators for severity estimates) can be de-
termined with high reliability, while symptomatic attack
rates (the denominator) can be estimated using surveys.
One of the earliest compelling indications of the relatively
low symptomatic case-fatality and case-hospitalization ra-
tios in young adults in 2009 came from the University of
Delaware outbreak.55 Such studies provide rapid, reliable
data, although estimates may be limited to certain demo-
graphic groups.

Another advantage of studying outbreaks, particularly in
nonresidential settings, is that once a case is identified,
household contacts can be tested for infection (through
virus detection and serology), monitored for symptoms and
outcomes, and later tested again serologically. Viral shed-
ding or serologic data, or both, can be combined with
symptom data to estimate the proportion of infectious or
infected individuals with particular symptom profiles, in-
cluding asymptomatic infection, and thus aid in evaluating
case definitions. These prospective studies can also estimate
the distribution of shedding times.56,57 As noted earlier,
confirmed cases identified as a result of people having
sought medical care often represent a biased sample skewed
toward severe cases. Identifying possible cases through ex-
posure, such as by household contact tracing, yields a less
biased sample. In 2009, a study of household contacts of
cases from a Pennsylvania school outbreak provided esti-
mates of household transmission rates and further evidence
on severity.58
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From Syndromic Surveillance to Estimates of Symptomatic Influenza

Can syndromic data be used to make reliable estimates of
influenza-attributable symptomatic disease? The answer
depends on one’s ability to accurately estimate several key
quantities that define the relationship between syndromic
surveillance outputs and the underlying number of pan-
demic influenza-attributable symptomatic infections.
These quantities may change over time, so a system that
provides reliable estimates in one situation may or may
not remain reliable from month to month.

Here we make these relationships explicit and identify
the key quantities that must be estimated to convert
syndromic data into estimates of pandemic influenza-at-
tributable symptomatic illness. In this box, the term
symptomatic is used to mean ‘‘meeting the definition of
influenzalike illness (ILI): fever, and either cough or sore
throat.’’

We define the following quantities for week w:
Cw¼ the number of ILI consultations per 100,000

population per week
Fw¼ the number of people with ILI whose symptoms

are caused by pandemic influenza per 100,000
persons per week

Pw¼ the probability that an individual with ILI caused
by pandemic influenza seeks medical attention and is
diagnosed with ILI

Nw¼ the number of individuals with ILI seeking care
per 100,000 population per week, whose symptoms are
not caused by pandemic influenza
The relationship among these quantities is:

Cw¼ Fw PwþNw

where Fw is the number we would like to estimate, since
this represents the true incidence of ILI due to pandemic
influenza.

Cw can be measured using data from a variety of
sources, such as the sentinel systems in France,138 the
United Kingdom,139 and New Zealand,45 and other
general-purpose systems, such as those based in health
maintenance organizations in the U.S. Weekly data on
the proportion of ILI among primary care consultations
can be obtained from systems like the ILINet in the U.S.;
unlike the population-based systems mentioned above,
this is not an incidence rate.

In settings where an incidence rate Cw of ILI consul-
tations is available, the challenge in determining Fw is to
estimate Pw and Nw.

Nw may be negligible, especially in adults, if the pan-
demic occurs outside the normal winter respiratory in-
fection season, as happened in the northern hemisphere

in 2009. However, this need not be the case. In Mexico,
the start of the pandemic overlapped with the end of
seasonal influenza, and in the southern hemisphere,
pandemic H1N1 transmission coincided with the normal
winter season.

Pw measures the probability that a symptomatic indi-
vidual in week w who is truly infected with pandemic
influenza seeks care and is diagnosed with ILI. Pw appears
to vary, at least geographically and possibly over time,
perhaps in response to levels of public concern. In the
U.S., Pw has been consistently estimated at about 40% to
60%;38 during the 2009 pandemic in New Zealand, by
contrast, it was estimated at 5.5%.45

However, at times of greater public concern about
influenza, both Pw and Nw—the incidence of consulta-
tions for ILI caused by something other than actual
pandemic influenza—will rise. Thus, for example, New
York City saw spikes in consultations by the worried ill,
and sometimes by the worried well, following news re-
ports about outbreaks or deaths. The use of specific case
definitions—for example, the requirement for measured
fever to define ILI—should reduce variability due to the
worried well but does not prevent changes in syndromic
counts due to increases in the number of worried ill—that
is, increases in Pw and Nw. Even more specific case defi-
nitions, such as emergency department consultation re-
sulting in hospital admission for ILI, should also reduce
the impact of the worried ill; this approach was used in
New York City in 2009.

One approach to estimate Fw is to make assumptions
(based on telephone or web surveys and knowledge of
other causes of ILI) about Pw and Nw.

Another approach is to estimate weekly the pro-
portion of all medically attended ILI caused by pan-
demic influenza. In our notation, this proportion is Fw/
Cw. This proportion can be estimated by testing a
representative subset of symptomatic individuals
meeting the syndromic case definition (here, medically
attended ILI) for pandemic influenza infection.1 Such
an estimate can give a consistent relative measure of
symptomatic pandemic influenza infection, but not a
rate per population, since it does not directly estimate
Pw. To limit the laboratory burden, the total number
of cases tested must be limited, even as case numbers
grow (perhaps by testing a fixed number of random
samples weekly). Even so, testing will be limited to
populations where sufficient laboratory capacity is
available.
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Outbreak investigations could be improved through
advanced planning of study designs and by having epide-
miologically trained personnel conduct the studies. Since
not every outbreak can be fully investigated, planners
should concentrate resources on investigations likely to
generate the most useful and generalizable data. Investiga-
tion plans should also be adaptable to the location judged
most likely to be informative, which cannot be predicted
until the pandemic is under way. Collaborations between
public health authorities and experts in statistical analysis of
outbreak data58 can help quantify epidemiologic parame-
ters of the pandemic and define how they are used to model
the future spread of the infection.

2.4. Clinical Case Series
Descriptive data on mild, hospitalized, and fatal cases are
valuable for many of the evidentiary needs described in
section 1. These data comprise line lists, with each line
describing at least an individual’s demographics (age, sex,
place of residence), preexisting medical conditions, and
outcome, and ideally including data on the course of the
illness and its treatment. Data for severe cases are collected
by state and local health departments and often come from
hospital records,14,35 while data for milder cases could be
obtained from primary care providers, albeit with more
difficulty in a setting facing intense healthcare demands.

Assessing risk factors requires data on the frequency of
the same preexisting conditions and demographic traits in
the general population. Remarkably, comorbidity fre-
quencies in the general population are often hard to obtain,
even in resource-rich countries, particularly for rare diseases
(such as neurologic disorders) or for co-occurrence of more
than one condition.59 Nonetheless, combining comorbid-
ity data from a few hundred cases with estimates of pop-
ulation frequencies can suggest the factors associated with
large excess risks. In addition, these hospitalized case series
provide one element of the severity ‘‘pyramid’’ (section 3.1)
by defining the proportion of hospitalized cases that require
ICU admission or mechanical ventilation, and the pro-
portion that are fatal.

2.5. Serologic Data
As described in section 1.3, measures of severity per infected
individual are extremely valuable for informing decisions
about the scale and targeting of response to an emerging
pandemic. To estimate severity per infected individual, it is
of course necessary to estimate the number of infected
people. The gold standard for detecting infection is testing
paired serum samples (preexposure and convalescent on the
same person) for virus neutralization or, more often,
hemagglutination inhibition.60 The rapid initiation of
prospective studies required to collect paired samples is
challenging in a pandemic. Therefore, cross-sectional

studies of convalescent sera provide a viable alternative.
Although other kinds of data—estimates of the number of
symptomatic, medically attended, or virologically con-
firmed infections in a population—are useful for estimating
the number of infections, these measures are difficult to
interpret because the ‘‘multiplier’’ relating any of them to
true infections likely varies by time, population, and
characteristics (eg, age) within a population. All the sources
of uncertainty noted in the sidebar on syndromic surveil-
lance contribute to uncertainty in the ratio between sero-
logical infections and symptomatic or medically attended
infections. If serologic data are not available, these sources
of uncertainty combine with uncertainty about the pro-
portion of symptomatic infections to result in wide confi-
dence bounds on the ratio of severe outcomes to
infection.61

Another potentially highly valuable use of serologic data is
to estimate parameters for transmission-dynamic models to
project the course of an epidemic.62,63 Transmissibility can
be estimated from the early growth rate of case numbers,
which does not depend on the proportion of cases reported
(as long as that proportion stays constant or changes are
accounted for34,37). To determine the timing and magnitude
of the peak in incidence, the estimated transmissibility must
be combined with an estimate of the absolute number of
individuals in age groups who have been infected at a par-
ticular time. If sufficient resources are available, the number
infected can be measured continuously in almost real time by
an ongoing serologic study.64 More economically, one could
estimate, at one point for a defined population, the pro-
portion of true infections (serologically determined) that
result in medically attended illness, hospitalization, or other
more convenient surveillance measure. Syndromic or hos-
pitalization surveillance can thereafter be a proxy for ongoing
serological surveillance.

The 2009 pandemic illustrated the challenges of using
serology to detect infection. Development of specific sero-
logic markers of pandemic H1N1 infection was hampered
by cross-reactions with antibodies resulting from prior
seasonal influenza infection. In addition, the experts needed
to develop and optimize such assays were in demand for
other tasks, including developing assays for vaccine candi-
date evaluation. Nevertheless, serologic data were obtained
on statistically meaningful samples of the population in the
United Kingdom65 and Hong Kong.56,64 Workers in Hong
Kong gathered symptomatic and serologic data within the
same defined population, in the context of a household
study56 that yielded a multiplier between symptomatic
and serologic cases. More detailed quasi-population-based
serologic studies have been described from Hong Kong in
recent meetings.64 The value of improving the capacity to
conduct large-scale serosurveillance in many popula-
tions for future pandemics engendered lively debate at
the Symposium, as it has in other recent influenza meet-
ings (see sidebar: Debating the Value of Large-Scale
Serosurveillance). For early estimates of seroprevalence,
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serosurveys may be needed in populations where laboratory
capacity for processing samples is absent or inadequate.
Collaborative arrangements may be needed (and ideally
should be set up in advance) to ensure timely processing of
samples and dissemination of results.

2.6. Telephone and Web-Based
Surveys
Telephone surveys, including the U.S. Centers for Disease
Control and Prevention’s (CDC’s) nationwide Behavioral
Risk Factors Surveillance System (BRFSS),66 and a more
limited telephone survey focused on ILI in New York
City,67 provided estimates of several quantities of interest to
decision makers, including symptomatic infection inci-

dence over a month-long recall window, the probability
that a symptomatic individual would seek medical atten-
tion, and vaccine coverage. Such a telephone survey led to
one of the earliest robust estimates of the symptomatic case-
fatality ratio.67

Telephone surveys can be performed rapidly and at
reasonable cost proportionate to the number of individuals
sampled, and standard methods exist to adjust such surveys
to reflect the population as a whole.66 However, with
questions that cover long recall periods (eg, ‘‘Have you had
this symptom in the past month?’’), the concern is how well
individuals can recount their illness history. While the es-
timate of 12% of New Yorkers reporting ILI during peak
spring transmission is plausible,67 a similar study per-
formed outside the influenza season indicated 18% to 20%

Debating the Value of Large-Scale Serosurveillance

Perhaps the most spirited debate at the CCDD Sympo-
sium and, indeed, among the authors of this report,
concerned the priority and feasibility of conducting
serosurveillance during a pandemic. Both sides agree on
the importance of estimating the cumulative incidence of
infection over time as the pandemic unfolds, for reasons
described in sections 1 and 2. The argument in favor of
serosurveillance61 emphasizes that serologic testing is the
gold standard for such estimates and that all other ap-
proaches suffer from considerable uncertainty. The ar-
gument against serosurveillance emphasizes the expense
and logistical difficulty of wide-scale serologic testing, the
unavailability and limitations of early serologic tests
(which add uncertainty to estimates), and the possibility
of obtaining estimates of infection from nonserologic
sources. In short, a large-scale prepandemic investment
would be needed to improve current influenza serologic
assay technology sufficiently so that valid serologic tests
could be developed quickly at the start of the next
pandemic.

As noted, challenges in serologic testing include: the
need to obtain ethical approval for serologic testing in some
locations; poor sensitivity and specificity of tests for some
novel viruses (including many early tests for 2009 H1N1);
the variable time to seroconversion, which adds variance to
estimates of the proportion positive at any one time; and
the labor involved in extensive testing, especially repeat
testing. Proponents of serosurveillance note that statistical
models can be used to adjust for the sensitivity, specificity,
and variation in time to seroconversion; in fact, work is
under way on such models. They also stress that tests with
low sensitivity and specificity, which might be poor tools
for clinical diagnosis of an individual, can still provide
valuable information about the proportion of the popula-
tion infected, given the appropriate statistical adjustment.

With regard to using nonserologic approaches to esti-
mating the fraction of the population already infected (eg,
data on patient visits), supporters of serosurveillance note
that in 2009 such efforts resulted in broad uncertainty
spanning several orders of magnitude and lasting until
just before the peak of transmission, at which point
predicting the peak was no longer very useful.62,63

However, those skeptical of committing resources to
serosurveillance argue that these calculations could have
had narrower ranges of uncertainty. They note that in
pandemic and seasonal flu, the proportion of infected
people who are asymptomatic or whose symptoms fall
below the standard definition of ILI has been repeatedly
estimated at between 25% and 75%,140-147 thereby de-
fining a limited range for the conversion factor between
estimates of population-based, influenza-attributable ILI
incidence (cases per capita) and estimates of infection
incidence. In the U.S., estimates of the incidence of
symptomatic pandemic influenza had a range of uncer-
tainty of about 2.5-fold.81 Combining this with an un-
certainty of about 3-fold in the multiplier between
symptomatic cases and infections, one obtains about a 4-
fold uncertainty in the number of infections.

Further work is needed, perhaps based on data from
the 2009 pandemic, to assess how well such proxies can
approximate retrospectively collected serologic data, as
well as how nonserologic data sources could be improved
to optimize the measurement of absolute incidence. In
addition to the immediate benefits of serologic surveil-
lance, the benefits to future epidemiologic studies of be-
ing able to retrospectively track the spread of infection in
a population should be considered. The costs and benefits
of enhanced nonserologic surveillance providing such
proxies could then be compared against those for sero-
logic surveillance.
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of New Yorkers with self-reported ILI.68 Clearly, statistical
adjustment for recall bias is required, as is more work to
ascertain how well these surveys reflect true symptomatic
incidence. If these issues were addressed, surveys of illness
in populations with well-ascertained severe outcomes could
become a very valuable tool for rapid severity assessment
that should be incorporated into pandemic plans.

Web-based surveys are a novel way to obtain estimates of
symptomatic incidence. Influenzanet,69 a Web cohort
survey that tracks influenza, is used in 5 countries.70 In-
dividuals are invited to join—and invite friends to join—a
cohort surveyed weekly for influenza symptoms. The Web
cohort design has several advantages: The low marginal cost
of including more subjects and more frequent queries can
yield a large sample. Better recall results are likely, since
individuals describe symptoms from a shorter time period,
such as the prior week. Furthermore, repeatedly surveying
the cohort is a cost-effective way to collect fairly detailed
demographic and other data for comparing risk profiles of
symptomatic and asymptomatic individuals.

Since raw data from a Web cohort are unrepresentative
of the overall regional population, it will be important to
assess how well incidence estimates from Web cohorts track
true population-based estimates. As with many other sur-
veys, it should be possible to develop techniques that weight
raw data from Web surveys to create nationally represen-
tative estimates, but these corrections will be population-
specific and may be difficult in jurisdictions with less ex-
tensive demographic data.

2.7. Hospital- and ICU-Based Data
Hospitalized patients can be characterized in greater detail
than most patients with mild influenza, offering the op-
portunity to identify risk factors and perform detailed
clinical studies. Some jurisdictions, such as New York City,
focused much of their surveillance effort on hospitalized
patients—having judged that the smaller volume of case
reports and relatively consistent case definition over time
would allow careful characterization of a defined subset of
more severe cases. High ascertainment of hospitalized cases
enabled the calculation of population-based hospitalization
rates, which could be compared across populations to reveal
important epidemiologic features of the pandemic, in-
cluding the disproportionate impact of the pandemic on
high-poverty neighborhoods in New York City35 and on
racial/ethnic minorities in Wisconsin.71

In 2009, several jurisdictions decided that hospitaliza-
tions were the most reliable basis for estimating both cu-
mulative case numbers and weekly trends.37,38 This
decision reflects the judgment that the rate of hospitaliza-
tions is less affected by changing levels of concern in the
population than other measures (such as physician con-
sultation for ILI). As with ILI data (see sidebar: Syndromic
Surveillance), hospitalization data can be converted into

estimates of total cases only by making assumptions about
the fraction of cases hospitalized.

Even without assumptions about how many infections
each hospitalization represents, the number and rate of
hospitalizations in various age groups can measure the
relative burden of severe influenza disease during a pan-
demic. Some jurisdictions maintain hospitalization sur-
veillance during seasonal influenza. In the U.S. during
2009, age-specific influenza hospitalization rates reported
by the Emerging Infections Program (EIP) Influenza Net-
work were an important indicator of pandemic severity72,73

because they could be compared against estimates from
prior nonpandemic seasons.74,75

The use of hospital-based data can present several chal-
lenges, the most important being the variation across hos-
pitals in the automation and timeliness of computerized
medical records. Also, in many settings, considerable effort
is required to extract and analyze data on hospitalized pa-
tients, and protocols for testing for influenza infection can
vary and depend on clinician discretion. The sensitivity and
specificity of even ‘‘gold standard’’ PCR-based tests may be
suboptimal.76 Many clinicians initially lacked access to
these tests and were limited to using less sensitive, rapid
tests,77 leading to underestimation of influenza-positive
cases. Once the rapid tests were known to be low-sensi-
tivity, their utility in clinical decisions was reduced, low-
ering the incentives for clinicians to test at all and further
hampering ascertainment.38,44 Despite these caveats, hos-
pital-based surveillance proved useful for many purposes in
the 2009 pandemic.

2.8. Virologic Surveillance
In the U.S., virologic surveillance takes 2 forms: submission
of influenza viral specimens and submission of data on
respiratory samples tested for respiratory viruses, along with
the number and percent positive for influenza. Worldwide,
specimens are collected and tested by WHO Collaborating
Centers.

In a pandemic setting, enhanced diagnostic sample
collection makes available many more viruses for testing
within such systems. Other sources of virus strains include
hospital-based surveillance systems, such as the U.S.
Emerging Infections Program (EIP) Influenza Project and
ILINet in the U.S., whereby virus samples taken for
clinical care are further characterized for surveillance
purposes.

Since the method of choosing isolates for testing is not
standardized, the representativeness of the tested strains is
uncertain.1 Nonetheless, these samples can generally illus-
trate the proportion of cases that, at a given level of severity,
are positive for pandemic influenza infection (or for other
strains of influenza), while further testing of selected strains
can characterize genetic and phenotypic changes that per-
haps involve drug susceptibility, antigenicity, and virulence.
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Each week in the U.S., the WHO and the National
Respiratory and Enteric Virus Surveillance System
(NREVSS) laboratories submit data from sample testing
of respiratory viruses to CDC, with each laboratory re-
porting the number of samples submitted for respiratory
virus testing and the number testing positive for influ-
enza. During the influenza season and the 2009 pan-
demic, the percentage of samples positive for influenza
provided information about the location and intensity of
influenza circulation. Data from more than 900,000 tests
were reported during the pandemic—almost 4 times as
many test results as CDC receives during an average
influenza season.

Global virologic surveillance and national systems out-
side the U.S. have similar objectives and in many cases use
similar systems. WHO’s FluNet reports weekly data from
National Influenza Centers on the number of specimens
positive for influenza A (by subtype and sometimes lineage
within subtype) and for influenza B.78

2.9. Surveillance in Resource-Limited
Settings
The challenges of conducting surveillance during a pan-
demic are magnified in settings with limited (and uneven)
access to health care and limited surveillance infrastructure.
As this summary was being written, WHO was attempting
to estimate the total burden of the pandemic worldwide.
Unfortunately, for many parts of the world, representative
data are simply unavailable, even after the fact.

Several approaches should be considered for future
planning. In middle-income countries with significant
public health infrastructure, it should be feasible to expand
population-based surveillance for respiratory illness that
provides a baseline for comparison with an emerging pan-
demic.79,80 It should also be possible to plan rapid outbreak
investigations and hospital-based surveillance to character-
ize a pandemic’s severity, clinical course, and risk groups.
Whether such preparations would be an efficient use of
public health resources in middle-income areas remains to
be determined. In some cases, it may be preferable to invest
in different priorities and depend on other jurisdictions and
WHO for guidance.

In the developing world, developing comprehensive
national surveillance is difficult and may be a poor use of
limited public health funds. However, most countries have
access to influenza laboratory capacity, either in country in
the form of a national influenza center or in a nearby
country. Many low-income countries also currently per-
form hospital- and clinic-based surveillance for mild and
severe respiratory disease in large urban centers and can
provide valuable data on the relative severity. It would be
valuable to set up a network that combines data from areas
in the developing world with unusually good surveillance

resources that could include demographic surveillance sys-
tem (DSS) sites, as well as medical study sites funded by
institutions like the U.S. CDC, the UK Medical Research
Council, the Wellcome Trust, and the Pasteur Institute’s
RESPARI network. Such a network could also provide
timely evidence on the characteristics of a novel influenza
strain in developing country settings, including those with a
greater burden of other infections, including HIV, TB, and
pneumococcal disease.

3. Interpreting Surveillance Data

for Decision Making

Raw surveillance data on a novel influenza strain, especially
from established systems with background data on non-
pandemic influenza, can broadly illustrate the trajectory of
symptomatic infections in time and space. To inform many
decisions, however, surveillance data must be processed to
estimate particular quantities—for example, transmissibil-
ity and severity measures or the cumulative proportion of
the population infected to date—and to define the pan-
demic’s possible course through formal prediction or
plausible planning scenarios.

3.1. Estimating Severity and Disease
Burden
Severity estimation and disease burden estimation are dif-
ferent approaches to answering interrelated questions: How
many cases? How many deaths (burden)? What is the ratio
of deaths to cases (severity)?

As described in section 1, case-fatality or other case-
severity ratios are probably the most important quantitative
inputs for early decision making. However, estimating both
the numerator and denominator of these ratios is chal-
lenging. For discussion purposes here, we focus on symp-
tomatic case-fatality ratios, where the numerator is fatalities
and the denominator is symptomatic cases.

Symptomatic case number estimates can come from
surveys (with some correction for the proportion of
symptomatic cases truly due to pandemic virus infec-
tion67,81,82) or from data at other levels of the ‘‘severity and
reporting pyramid,’’38 such as confirmed cases38 or hospi-
talizations81 combined with an estimate of the proportion
of symptomatic cases hospitalized.81 If one made assump-
tions about the proportion of asymptomatic cases, these
estimates could be converted into estimates per infection
(see sidebar: Large-Scale Serosurveillance).

Case ascertainment will always be less than 100% and
will vary over space and time in the pandemic. If unac-
counted for, ascertainment can bias severity estimates. In
the earliest phases of a pandemic, symptomatic case num-
bers can be biased by the preferential detection of the most
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severe cases, leading to substantial overestimates of severity,
since these cases are more likely than typical cases to be
fatal.

For example, as of May 5, 2009, Mexico had reported
almost 1,100 confirmed H1N1 cases and 42 deaths from
H1N1,10 a crude case-fatality proportion of about 4%. In
hindsight, this high apparent severity was largely, or en-
tirely, attributable to the underascertainment of mild cases,
of which there were probably several orders of magnitude
more than the number confirmed.5,6 As public health ef-
forts scaled up and an increasing number of milder cases
were detected, this bias declined,34 but it did not disappear,
showing how even with the most intense efforts, only a
minority of symptomatic cases may be virologically con-
firmed.38

The numerator—fatalities—can be directly estimated in
jurisdictions with routine viral testing of fatal cases. Ex-
perience in 2009 showed that some fatal cases are diagnosed
only on autopsy,36,76 posing a risk for underestimating the
numerator. A second source of variability is differences
between jurisdictions in the definition of influenza deaths,
which may include all fatalities in individuals in whom the
virus was detected or only those in whom the virus was
judged to have caused the death. Another potential source
of error in estimating the number of deaths is the delay
from symptom onset to death from pandemic influenza,
which can be a week or longer.11,82,83 For this reason,
deaths counted at time t may not correspond to all the cases
up to time t but to the cases that had occurred up to a week
or more before t. In the exponentially growing phase of the
pandemic, there may be many recently infected individuals
who will die but have not yet died; they are counted in the
denominator but not the numerator. If unaccounted for,
this ‘‘censoring bias’’ can lead to an underestimate of se-
verity as much as about 3-fold to 6-fold during the growing
phase of a flu pandemic.11 Two basic approaches can ad-
dress this bias: One is to correct for it based on the growth
rate in disease incidence and the lag time between case
reporting and death reporting.11 Another is to perform
analyses after transmission has subsided in a population,
by which time most deaths will have been registered in the
data set.44

Notwithstanding these sources of bias, it is particularly
challenging to precisely estimate the case-fatality propor-
tion when the true proportion is low. In any population
with a statistically robust number of deaths (eg, more than
10 cases) and a symptomatic case-fatality proportion of 1 in
10,000 (0.01%), it would require 100,000 documented
symptomatic cases (or a correspondingly large number of
confirmed cases) to directly estimate the ratio—an im-
practical approach.1 The 2009 pandemic highlighted the
need for other approaches.

One alternative is to conduct surveys within defined
outbreak populations to estimate the number who are ill
and relate this number to the directly measured number of

severe outcomes. For example, in an early H1N1 outbreak
at the University of Delaware, 10% of student respondents
and 5% of faculty and staff on a campus of 29,000 reported
ILI that resulted in 4 hospitalizations but no deaths.55

While this could not yield a precise estimate of the symp-
tomatic case-fatality or case-hospitalization proportions, it
provided useful upper bounds. A telephone survey yielded
similar estimates in New York City.67

Another approach to estimating case-fatality proportion
is to decompose the severity ‘‘pyramid,’’ instead relying on
some types of surveillance to estimate the ratio of deaths to
hospitalizations and on other types to estimate the ratio of
hospitalizations to symptomatic cases.44 Bayesian evidence
synthesis methods84 are a natural framework for combining
the uncertainty in the inputs to such estimates into a single
estimate of uncertainty in severity measures.44

Overall, the presence of countervailing biases (the un-
derascertainment of both numerator and denominator)
made initial severity assessment challenging in the 2009
pandemic. Although both biases were recognized, it was
difficult at the time to identify the more severe bias. In
retrospect, censoring bias was minor compared to the un-
derascertainment of mild cases, making early estimates of
severity higher than current estimates based on more
complete data. There was also important uncertainty about
whether estimates differed between populations (eg, U.S.
versus Mexico) because the severity was truly different or
because ascertainment patterns differed. These conclusions
are outbreak-specific; in SARS, for example, ascertainment
was relatively complete, but censoring bias—perhaps more
acute than in 2009 because of the longer delay from
symptom onset to death—led to substantial underestimates
of severity until the bias was corrected for.85

All of these considerations, described in the context of
attempting to estimate overall risk of mortality, are relevant
as well to more complex measures of severity, such as years
of life lost.29

Because influenza is seasonal, experiences in one hemi-
sphere can—and did—inform planners and decision
makers in the other. In 2009, the southern hemisphere was
the first to have a full, uninterrupted winter season with the
novel H1N1 virus. Rapid reviews of the experience in the
southern hemisphere’s winter season86,87 provided evidence
for northern hemisphere planners that the capacity of in-
tensive care units would likely be adequate overall, though
local shortages might occur.

3.2. Interpreting Clinical Data
Data on the characteristics of severe clinical cases are di-
rectly relevant to decisions about prioritizing prevention
(eg, vaccination) and using scarce resources to treat those
most likely to benefit. Choosing priority groups for such
preventive measures as vaccination should depend in part
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on the per capita relative risk of having various groups suffer
severe outcomes without vaccination.30 For a particular
group—pregnant women, for example—this risk can be
estimated by dividing the proportion of pregnant women
among individuals with severe outcomes by the proportion
of pregnant women in the general population.

This same measure of comparative severity applies to
prioritizing other measures that are distributed to unin-
fected people. In 2009, it was proposed that certain groups
might benefit from predispensed (or easier access to) anti-
viral drugs to aid in early treatment. The potential benefits
of such a policy depend mainly on the per capita risk of
severe outcomes in the priority groups compared to the
general population.88

To prioritize treatment of symptomatic individuals, the
relevant measure of comparative risk is severity per case,
not per capita, since the decision involves a person with
presumed or known infection, not a randomly chosen
group member. The distinction between these 2 measures
is that per capita severity is equal to per case severity times
the risk of becoming a case. For example, in most
countries, people over age 50 showed considerably higher
severity per case, but only modestly higher per capita se-
verity, because they were less likely than younger people
to be infected.

The goal for all the purposes outlined above is to identify
predictors of severe outcome rather than understand why
the predictors are associated with the severe outcome.88 In
the 2009 pandemic, morbid obesity was identified in some
case series as a predictor of hospitalization and death,89

prompting much discussion about whether morbid obesity
itself caused the outcomes or whether it was a marker of
other conditions that did so. This question of etiology is
unimportant when allocating resources; if high-risk indi-
viduals can be identified, they can receive priority for pre-
vention or treatment and the benefit will be the same,
regardless of whether the identifying factor is causal or only
a marker.

3.3. Estimating Transmissibility
A standard summary measure of transmission intensity is its
reproductive number—the mean number of secondary
cases caused per primary case. When this exceeds 1, inci-
dence grows; below 1, incidence declines. Absent mitiga-
tion measures, an estimate of the reproductive number of a
strain at baseline can inform how intensely transmission
must be reduced to slow or stop the growth in the number
of cases.90 To halt growth, the critical proportion of
transmission events that must be blocked is given by 1
minus the reciprocal of the reproduction number. Esti-
mates of changes in the reproduction number over
time91,92 can indicate the impact of control measures37 or
of intrinsic changes in transmissibility due to depletion of
susceptible individuals, seasonality, or other changes.93

A common approach to estimate transmissibility of a
newly emerging infection relies on estimates of 2 quantities:
the exponential growth rate of the number of cases and the
distribution of the serial interval or generation time—that
is, the time from infection to transmission.94 The minimal
data required to derive the reproductive number from these
2 estimates are a time series of the number of new cases
(ideally, a daily time series) and an estimate of the serial
interval distribution,92 which can come from early outbreak
investigations.5,95 The assumption is that the distribution
of intervals between symptom onsets approximates that of
the intervals between times of infections.96 Remarkably,
with certain assumptions, one can infer both the serial in-
terval distribution and the reproductive number using only
the time series of new cases.34,97

Key challenges in estimating reproduction numbers from
epidemic curve time series include changes over time in the
fraction of cases ascertained—which can affect apparent
growth rates and therefore bias reproductive number esti-
mates—and reporting delays, whereby, even in a growing
epidemic, recent case incidence will appear to drop off due
to recent, unreported cases.7 There is growing methodo-
logical and applied literature on addressing these chal-
lenges34,37,94,96,98 and obtaining corrected estimates or
bounds for the reproductive number. Analyzing viral se-
quence data, discussed below, can provide a partially in-
dependent estimate of transmissibility and validate
conclusions made from purely case-based estimates.

3.4. Real-Time Predictive Modeling
Transmission-dynamic models can be used to predict the
possible future course of an epidemic (eg, the number of
infections per day in various groups) given certain assump-
tions. These assumptions, or model inputs, include such
quantities as the reproductive number of the infection, the
relative susceptibility and infectiousness of different groups
in the population, the natural history of infectiousness, and
the nature and timing of possible interventions. Transmis-
sion-dynamic models have been widely used as planning
tools to assess the likely effectiveness of interventions for
pandemic influenza19,25,99-101 and many other infec-
tions.102,103 In these cases, the models are applied to hypo-
thetical epidemics, and the input assumptions are taken from
past epidemics of similar viruses. In this section, we consider
a distinct though related application of transmission-
dynamic models: predicting the dynamics of a pandemic as it
unfolds by using real-time data on the incidence and prev-
alence of infection to date in various population subgroups.

Since reliable predictions of a pandemic’s time course are
tremendously helpful for response planning and decision
making (sections 1.5-1.6), it would be valuable if trans-
mission-dynamic models were employed in real time to
make and update predictions of the course of transmission.
This would require 3 ingredients: (a) a sufficiently accurate
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mathematical model of the key processes that influence
transmission; (b) data on the current and past incidence of
infection with the pandemic strain, population immunity,
and other parameters needed to set initial model condi-
tions; and (c) an assumption that the biological properties
of the influenza virus would not change within the time
scale of prediction.

Transmission-dynamic models are now computationally
capable of including virtually unlimited amounts of detail
in the transmission process,104 but knowledge of some of
their inputs is limited. For example, while much is known
about the factors that affect influenza transmission, areas of
uncertainty remain, including the exact contributions of
household, school, and community transmission;104 the
contribution of school terms, climatic factors, and other
drivers to transmission seasonality;93,105-107 and the role of
long- and short-term immune responses to infection with
other strains in susceptibility to pandemic infection.108 Our
understanding of behavioral responses to pandemics is also
at an early stage.109

During a pandemic, incidence data are imperfect and
subject to substantial uncertainty in the ‘‘multiplier’’ be-
tween observed measures of incidence and true infection
(see sidebars: Syndromic Surveillance and Large-Scale
Serosurveillance). Since infection and resulting immunity
drive the growth, peaking, and decline of epidemics, this
conversion factor is crucial to setting model parameters.
Finally, changes in the antigenicity, virulence, or drug re-
sistance of a circulating strain could invalidate otherwise
reliable model predictions.

Efforts at real-time modeling in the 2009 pandemic
showed that uncertainty in the number of individuals in-
fected in various age groups at any given time hampered
efforts to forecast the pandemic using transmission-
dynamic models. Despite this limitation, the 2009 ex-
perience illustrated the potential of predictive models to
provide policy guidance by generating plausible scenarios
and, as important, by showing that certain scenarios are less
plausible and thus of lower priority for planning.

In one published case study, Ong and colleagues set up
an ad hoc monitoring network among general practitioners
in Singapore for influenzalike illness and used the reported
numbers of daily visits for ILI to estimate, in real time, the
parameters of a simple, homogeneously mixed transmis-
sion-dynamic model, which they then used to predict the
course of the outbreak.62 Early predictions of this model
were extremely uncertain and included the possibility of an
epidemic much larger than that which occurred. This un-
certainty reflected the limitation of the input data (here,
physician consultations). Without a known multiplier, it
was impossible to scale the number of infections anticipated
by the model to the number of consultations. By late July,
the growth in the incidence of new cases had slowed, pro-
viding the needed information to scale the observed data to
the dynamics of infection, allowing for more accurate and
more precise predictions.62

Data on healthcare-seeking behavior were used in a
similar effort in the United Kingdom, but with a more
detailed, age-stratified transmission-dynamic model. Here,
too, the timing and magnitude of the peak were difficult to
predict because of uncertainty in the conversion factor
between observed consultations and true infections—
although in this case the authors, by their own description,
had made a guess that was roughly accurate63 when tested
against serologic data.65

A third effort was made in late 2009 to assess the like-
lihood of a winter wave in U.S. regions. Based on estimates
of the rate of decline of influenza cases detected by CDC
surveillance in November to December, combined with
estimates of the possible boost in transmissibility that might
occur due to declining absolute humidity,107 it was antic-
ipated that any winter wave would be modest and likely
geographically limited. Further analysis after the fact
showed that the southeastern U.S. was the region most
likely to experience further transmission due to a seasonal
boost in transmissibility, a finding consistent with obser-
vations.93

These experiences indicate that real-time predictive
modeling is possible but will also include considerable
uncertainty if undertaken responsibly. For transmission-
dynamic modeling, the most important source of uncer-
tainty lies in the multiplier between cases observed in sur-
veillance systems and infections. Modelers must therefore
seek out the best data to estimate parameters for models by
paying careful attention to publicly available data and by
building relationships with those who conduct surveillance
prior to pandemics, so that information transfer is facili-
tated in the midst of an event. As noted by the authors of
the studies described above, and in reviews by several
consortia of transmission modelers,7,61 the factor that could
most improve the reliability of real-time models is having
nearly real-time estimates of cumulative incidence—
whether through serosurveillance or other means.

The real-time, predictive modeling described above is
one of the developing frontiers within the broader scope of
transmission-dynamic modeling. These approaches differ
from scenario-based modeling, which may be performed
before or during a pandemic to provide robust estimates
of the possible effects of interventions under particular as-
sumptions rather than predict the short-term dynamics of
the infection. Scenario-based modeling18,19,23,25,90,104,110

has significantly improved our understanding of epidemic
dynamics and the likely responses to interventions, but it is
most helpful when predictions are robust to variations in
assumptions that may be difficult to pin down during an
epidemic.

3.5. Interpreting Virologic Data
Simple virologic confirmation of pandemic H1N1 in-
fection was an integral part of case-based surveillance,
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especially early on and for severe cases. The proportion of
viral samples that are positive, alone or in combination with
ILI data, provides a measure of incidence (with the caveats
described in previous sections). A more novel approach is to
use viral sequence data to time the origin, rate of growth,
and other characteristics of a pandemic,5 applying methods
that rely on the coalescent theory developed in recent dec-
ades in population genetics, in which the quantitative his-
tory of a population can be inferred from the pattern of
branching in a phylogenetic tree.111

Work is still under way to assess the quality of inferences
made from methods for viral sequence data, although very
early transmissibility estimates were broadly consistent with
those from case-count data.5 However, one early finding is
that the strength of inferences can be improved by consis-
tently associating epidemiologic data (in particular, data on
the geographic and temporal origin of a strain) with se-
quence data. Unfortunately, while easy to gather, these
‘‘metadata’’ often do not appear together with sequences in
online databases.

3.6. Detecting Changes in the Virus
On the minds of many analysts and decision makers in
2009 was the 1918 experience, in which a wave of clinically
mild infection with a pandemic virus occurred in the
spring, followed by a wave of much more virulent influenza
in the fall.112-114 The appearance of a more virulent virus
strain is one of several hypotheses for how such a change
occurred. Speculation aside, such an event reinforces the
public health importance of detecting changes in drug re-
sistance or antigenicity during a pandemic. Ongoing sam-
pling of viral isolates from diverse sources, along with
surveillance to detect unusual clusters of severe illness, are
valuable in maintaining awareness of any variation in a
virus that could be biologically and epidemiologically sig-
nificant.

The 2009 pandemic showed it is possible to detect
mutations that, on biological grounds, may affect virulence
and transmissibility, but it also illustrated the challenge of
interpreting such genetic changes. The E627K mutation in
the PB2 gene, detected in several isolates of pH1N1, was
expected to dramatically increase virulence; however, ani-
mal studies showed the mutation had little effect in the
genetic background of the 2009 strain, and it has not ap-
peared to spread widely in the viral population.115 In
contrast, the hemagglutinin D222G substitution, which
alters receptor binding,116 was associated in several popu-
lations with more severe disease.117-119 The exact mecha-
nistic consequences of this mutation remain uncertain, and
it has not replaced the wild-type sequence in the viral
population. It would be valuable to develop more specific
strategies for obtaining and characterizing novel or unusual
variants of pandemic viruses that may be associated with
important phenotypic changes and to implement and test

these principles during interpandemic periods. Targeted
approaches, including systematic sampling from a defined
mix of mild, severe, treated, and untreated infections, could
be one component of such a strategy.1

4. Other Considerations in Decision

Making

The progression from data to evidence to evidence-based
decisions, described up to now and portrayed in Figure 1, is
an idealization. In reality, the decision-making process is
not so simple. Evidence is neither always perfect nor
available when required. Even if it were, sources other than
surveillance and epidemiologic data should and do influ-
ence decision making.

4.1 Historical Experience
When confident estimates of the absolute and relative
severity, transmissibility, and other key parameters of a
novel influenza strain are unavailable, historical experi-
ence of pandemics can provide valuable evidence for
planning.120 All 3 influenza pandemics that occurred in
the twentieth century—in 1918, 1957, and 1968—shared
a set of features: greater burden of severe disease in
younger people than seen during seasonal flu; persistence
of this pattern into subsequent years;121 and transmission
outside of normal flu season in temperate regions. These
common characteristics informed public health planning
during the 2009 pandemic, especially during the early
stages.120

Also valuable was knowledge of the differences among
the pandemics: major variation in overall severity, variation
in the impact on the elderly, and increased severity in the
fall wave versus the spring wave (which occurred only in
1918). Awareness of these differences expanded the range of
possibilities for which to plan. Even as evidence accumu-
lated on overall severity of the 2009 pandemic and as es-
timates of the case-fatality ratio and other measures of
severity declined, historical considerations justified plan-
ning for the contingency that severity could drastically in-
crease.

Decisions to react aggressively to the pandemic were
made when data could not reliably estimate per-case se-
verity, so the possibilities consistent with the early data
ranged from an outcome considerably milder than a typical
flu season to one comparable to a severe flu season, or
worse. In the face of this uncertainty, developed countries
had to decide whether to invest billions of dollars in vaccine
procurement. Such investments are cost-effective in average
influenza seasons. Thus, the expectation they would be so
even in a mild pandemic was justified—all the more so if
severity were higher than a typical flu season or if the vir-
ulence of the virus changed.
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Even if decision makers had known the pandemic
strain’s severity in 2009 was lower than envisioned in
pandemic planning scenarios, we suspect vaccines would
have been procured and that this would have been a sound
decision. Suppose, for example, data had been available in
April 2009 to definitively show a case-fatality ratio of well
below 1 in 10,000 in all groups—a ratio below the lower
end of current estimates for the 2009 pandemic virus in
developed countries38,44,45,67—but that the virus was
transmissible from person to person and was spreading
widely. Would it have been responsible for public health
authorities to defer vaccine procurement, given the histor-
ical precedent for a mild infection to turn virulent in a
matter of months?112-114 Arguably, historical experience
would trump contemporary evidence from surveillance and
other sources and call for an investment in prevention,
regardless of the estimated severity of the disease at the time
of the decision.

4.2 Public Opinion
Public opinion affects policy decisions about pandemic
response in at least 2 ways. First, since policymakers are
ultimately responsible to the population, they must take
into account a number of factors besides the (uncertain)
projected public health benefits of a decision. A policy may
receive little public support, even if it most efficiently uses
resources to solve a public health problem, while another
decision with little immediate benefit may be judged de-
sirable.

Second, public opinion may constrain the range of policy
options available to decision makers because these policies
rely on voluntary decisions made by individuals. The use of
an adjuvant-containing vaccine, for example, might be a
prudent public health decision for maximizing the number
of available doses, but public opposition might have made
such a decision impractical in the U.S. even if regulatory
concerns had been met. Political consequences aside, public
opposition could also reduce uptake of the vaccine, po-
tentially leading to counterproductive outcomes.

4.3 Logistics
As evidence accumulates, it may be desirable to change
policies; however, some factors may restrict such changes.
First, implementing decisions and disseminating recom-
mendations takes time—particularly when policies require
hiring and training staff for ‘‘surge’’ operations—and such
delays can render a policy change ineffective. Second, even
if a policy could be changed, its benefit must be weighed
against any potential undesirable effects, such as confusing
the public, clinicians, or other recipients with a revised
public health message. In extreme cases, officials can even
lose their credibility if guidance is perceived as being
inconsistent.

4.4 Cognitive Limitations

Limitations in how analysts and decision makers process,
evaluate, and prioritize information also hinder the incor-
poration of surveillance evidence into decision making.
Although the 2009 experience was not as severe as other
scenarios considered in pandemic planning exercises, the
response was nevertheless an extreme escalation in public
health agency activity, with decisions made under condi-
tions of stress, fatigue, and time pressure, as well as with
limited information.

Such conditions make cognitive errors more likely.122,123

At the Symposium, decision makers discussed the diffi-
culties of authenticating and balancing conflicting infor-
mation and in prioritizing the many decisions required.
They also reported that certain forms of data were a dis-
traction. For example, following the very early stages of the
2009 pandemic, case counts were an unreliable indicator of
infectious spread because of inconsistencies in testing and
reporting.1

Spatial variation in case confirmation further challenged
data interpretation. During the spring-summer wave,
Milwaukee and the state of Wisconsin devoted more effort
to case testing and confirmation than most other jurisdic-
tions. However, the differences in their efforts were not
known to all data recipients, creating confusion about how
much of the geographic variation in reported pandemic flu
activity was real and how much of it was due to differences
in ascertainment.

All users of the data confronted these challenges, but they
were particularly acute for decision makers, such as elected
officials, who lacked direct access to the primary data.
Generally, as new data are gathered, it is difficult to de-
termine what biases exist and how much they distort the
evidence. For example, in the first week of May 2009, an
approximate 40-fold difference existed in the ratio of deaths
to cases in data from the U.S. (about 0.1%) and Mexico
(about 4%). While both figures were biased, it was unclear
which (if either) accurately reflected case severity.

We have discussed the importance of mathematical and
statistical modeling in surveillance and epidemiology data
processing. Some of these techniques are unfamiliar to
many public health officials, and the outputs of these
models depend strongly on the quality of their inputs,
which are often uncertain in a pandemic. Consequently,
the greater the sophistication or complexity of a method,
the more difficult it may be for decision makers to un-
derstand the strengths and limitations of the evidence
provided.

Given the time constraints and other pressures just de-
scribed, the usual scientific checks and balances of peer
review, replication, and debate can be compressed into a
very short time period for findings that are presented rap-
idly after their generation. Thus, in such a setting, there is
an added responsibility for those who present decision
makers with results of complex analyses to highlight the
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limitations and assumptions of their models, as well as to
identify particularly robust predictions. As important,
modelers need data to calibrate models and estimate their
parameters, but they may lack an understanding of the
biases and limitations of data collected in an emerging
epidemic and about the possible changes over time in the
ascertainment of cases. An additional responsibility in the
3-way interaction among public health agencies that gather
data, decision makers, and modelers (some individuals may
have more than one of these roles) is to ensure that these
limitations are understood and accounted for in the process
of modeling or other ‘‘processing’’ of the data.

It should also be noted that seasonal influenza epidemics
occurring outside of pandemics offer opportunities to de-
velop, disseminate, and explain new methods to the plan-
ners who will rely on them during an emergency. A
complementary strategy, used in several places in 2009, is to
‘‘embed’’ mathematical modelers and statisticians with
skills in the analysis of epidemic data within public health
agencies during a pandemic, to facilitate rapid exchange of
data, questions, and analyses.

5. Lessons for the Future

The response to the 2009 pandemic was successful in many
ways, thanks to the extraordinary public health resources
mobilized to confront the novel H1N1 virus. This response
relied on existing infrastructure built for surveillance and
for epidemiologic and virologic studies of seasonal influ-
enza, and expanded in many cases to meet the needs of the
pandemic. Pandemic planning, a major focus of public
health agencies over the previous half decade, improved the
ability of public health agencies to rapidly scale up a re-
sponse.

Nevertheless, the 2009 experience also highlighted the
limitations of our ability to respond to a pandemic virus.
The most important of them—the inability to manufacture
a vaccine fast enough to immunize the population before
peak influenza activity in either hemisphere—is a techno-
logical problem outside the scope of this article. However,
the successes and challenges of influenza surveillance in
2009 yielded clear lessons, some of which are discussed in
this section along with recommendations for improving
preparedness and response in future pandemics.

5.1. Overall Response
Despite its extensive spread throughout Mexico, the
pH1N1 influenza virus was discovered and characterized
before most other countries experienced significant trans-
mission. Estimates of transmissibility and the likely broad
extent of infection within Mexico were published within 1
month of the initial public health response and have gen-
erally proven consistent with later estimates based on more

complete data.124 Existing surveillance systems in devel-
oped countries provided estimates of the geographic and
temporal trajectory of disease incidence, although only in
rare cases could these estimates be defined as true incidence
rates (numbers of clinical cases per person per unit of time).
The mobilization of public health efforts at all levels led to
the swift creation of systems that tracked the trajectory of
infection at various geographic levels. Some systems, such
as the Distribute project network of emergency department
surveillance,46 grew dramatically during the pandemic and
should continue as low-cost, useful resources for monitor-
ing seasonal influenza and future pandemics.

5.2. Severity Estimation
As discussed earlier, per case severity is perhaps the most
important quantitative input to decision making. By mid-
summer, published estimates of the case-fatality ratio (with
different denominators) ranged from several deaths per
thousand cases, down to 1 death in 250,000 cases.11,12,55,67

While each estimate was reasonably inferred from the data
used, it was difficult at the time to quantify the biases in
each data set. How ambiguities could have been resolved
much earlier remains unclear.

For future reference, it would be valuable to have a set of
principles for evaluating severity—with strengths and
weaknesses of each method defined—and a formal process
to compare estimates. Such a framework would require
analysts to precisely define the numerators and denomi-
nators of each data set. These definitions could facilitate
data interpretation and thus aid in the understanding of
seemingly conflicting information. As the 2009 experience
showed, disparate severity estimates may often reflect dif-
ferent denominators (confirmed cases, severe cases, symp-
tomatic cases) rather than truly different severity. A precise
framework would also allow the natural incorporation of
disparate data types into an overall estimate of severity via
Bayesian evidence synthesis.44,62,84 Several public health
authorities, including the U.S. and European CDCs and
WHO, are currently developing such frameworks.

5.3. Timeliness of Information
The dissemination of information in the 2009 pandemic
has been judged successful overall.9,125 We share this as-
sessment, but we note that several factors slowed the
gathering and dissemination of important information on
the virus’s epidemiology. For example, although there was
sharing of clinical experience via networks of clinicians set
up by WHO and other organizations, the first large-scale
(hundreds of cases) quantitative analysis of risk factors for
hospitalization for 2009 was published online on October
8, almost 4 months after the data were gathered.14 Ad-
dressing sources of delay in gathering, computerizing, ag-
gregating, analyzing, and reporting emerging data should
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lead to a more efficient and productive public health re-
sponse in future pandemics.

For example, many records, especially at hospitals and
local public health departments, were created on paper,
requiring significant data entry prior to analysis.126 Im-
proved computerization of medical and public health data,
along with computer system integration and databases that
can combine surveillance, epidemiologic, and laboratory
data, would have been valuable for this aspect of the re-
sponse.

Once in computerized form, raw data must be processed
into evidence on risk factors, treatment effectiveness, and
other information, with analyses conducted by individuals
with statistical and epidemiologic analysis skills, as well as
knowledge of the subject matter and an intuitive sense for
identifying potential problems in the data. Because quali-
fied analysts were in high demand for many other response
activities, the timeliness of data analysis lagged in certain
jurisdictions.

Such personnel shortages are almost certain to recur in
future pandemics. Advance planning to define priorities for
surveillance and other public health activities, as well as the
personnel requirements to accomplish them, would help
expose areas where particular skills are needed. Ensuring
surge capacity, perhaps through collaboration with aca-
demic centers, would also be helpful.

Once analyses are available, dissemination should be
rapid. Many jurisdictions published data summaries on a
daily or weekly basis on their websites. For many aspects of
the data obtained in pandemics, including severity esti-
mates, public health officials face conflicting pressures in
communicating current knowledge in a timely fashion.
Transparency demands immediate dissemination of evi-
dence—and clear statements of uncertainties surrounding
it. However, releasing every potentially conflicting piece of
information risks confusing the public and decision makers
outside public health. It may also undermine the credibility
of those providing the evidence. Properly balancing these
demands requires sensitivity and good judgment.

Another delay in disseminating information in 2009 was
the internal clearance processes at some (but not all) public
health agencies, and the peer-review process, which at some
journals took months even for information with urgent
clinical implications. The internal clearance process should
be streamlined in jurisdictions where it created significant
delay. The peer-review bottleneck was recognized during
the 2009 pandemic (and before), and several promising
approaches were tried. The journal Eurosurveillance pro-
vided extremely rapid peer review and publication,127

thereby acquiring a reputation as a home for reports
deemed important enough for rapid dissemination. The
Public Library of Science (PLoS) teamed with Google to
create PLoS Currents Influenza, an online-only ‘‘journal,’’ to
which scientific papers, opinion pieces, or other analyses
could be submitted for moderation ‘‘to determine as rapidly
as possible if . . . [the submission] is a legitimate work of

science and does not contain any obvious methodological,
ethical or legal violations.’’ PLoS Currents Influenza pro-
vided a useful forum for quickly sharing results. The U.S.
CDC’s Morbidity and Mortality Weekly Report, which is not
formally peer reviewed, also provided a forum for rapid
dissemination of both data and recommendations.

Crucial to the success of these forums was that articles
could be referenced on PubMed, making them easy to find
in literature searches, and they were available free of charge.
In the early phases of the pandemic, PLoS Currents Influ-
enza also allowed articles published online to be submitted
to the peer-reviewed journals of PLoS, meaning that re-
searchers did not have to choose between rapid dissemi-
nation and peer review, thus keeping open the possibility of
publication in a well-regarded journal. The leading subject-
specific journal, Influenza and Other Respiratory Viruses,
adopted the same policy.

PLoS has since changed this policy: Today, PLoS Cur-
rents Influenza publication is considered final, with no
option to submit for further publication. Eurosurveillance
remains peer reviewed and rapidly evaluates articles
(though not as quickly as during the pandemic). For future
pandemics, other leading journals could consider modify-
ing embargo rules and enhancing peer-review systems to
encourage swift dissemination of key data.128

Finally, many population-wide data sources, such as
hospitalization databases129 and cause of death records,130

are made available with a delay of several years. At present,
all-cause mortality reporting in Europe131 and all-cause and
pneumonia and influenza mortality reporting in the U.S.
from 122 cities132 provide timely signals of large-scale
trends, but it should be possible to increase the timeliness of
more detailed data collected electronically on age- and
cause-specific hospitalizations and deaths at various geo-
graphic levels.

5.4 Integration of Information
Even if available in a timely fashion, information must be
presented in a way that allows decision makers to evaluate it
quickly and effectively. Thus, it is critical that information
be clear, consistent, and in a concise format that summa-
rizes key knowledge and includes both uncertainty about
the major questions and any report updates. No less im-
portant is providing decision makers and those responsible
for implementation with a common source of information
that fosters an equal understanding of the problem among
all involved. One approach could be a computerized
‘‘dashboard’’ that supplies summary estimates and addi-
tional details on specific topics. A complementary solution
could be the dissemination of narrative, yet quantitative,
planning scenarios that translate surveillance data into a
small number of possible outcomes to facilitate decision
making. Such coordination would best be accomplished at
the national level, but shared with local jurisdictions. Data
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inputs to such a summary would come from local and (in
the U.S.) state health authorities, from local and national
investigations and surveillance systems, and from other
sources. Analytic capacity to process these inputs might
come from a combination of government and academic
experts. The severity frameworks described in section 5.2
could be a prototype for quantitative or narrative synthesis
with a broader scope.

5.5. Information Sharing
During the pandemic, communication improved among
decision makers, data analysts (including transmission-
dynamic modelers and epidemiologists), and data gatherers
at the local, national, and global levels. At their best, these
linkages enhanced the exchange of information and ideas,
often through informal channels. Collaborations across
these levels led to rapid and sometimes novel data analyses
(often by academics collaborating with public health
authorities).7

However, the novelty of many connections and com-
peting demands on the time and attention of participants
meant that information exchange was often incomplete.
Improving relationships—especially those between gov-
ernment decision makers and technical experts within their
own public health agencies, and those between public
health agencies and academics—can pay dividends in fu-
ture pandemics. Joint appointments between medical or
public health schools and public health agencies can be
particularly helpful if appointees are influential within the
agencies and maintain robust research groups that can assist
with the issues described in this article. In whatever ad-
ministrative manner these connections are established, a
clear understanding by participants of each other’s cap-
abilities and requirements for data or evidence inputs is
necessary to improve the efficiency of the future response.

5.6. Serologic Studies
During the 2009 pandemic, population-based serologic
studies were rare. The first large seroprevalence study was
completed and published only after the spring and autumn
waves occurred in the northern hemisphere. As with epi-
demiologic data analysis, the development of serologic tests
suffered from a competition for skilled personnel. Many
who could have been optimizing seroepidemiologic assays
were instead occupied with other urgent tasks, including
developing assays to test vaccine lots for immunogenicity.

Given the views of some61 that large-scale serosurveys are
essential to surveillance in a pandemic, but in light of the
substantial barriers to conducting these with current tech-
nology and resources (sidebar: Serosurveillance), formal
efforts are needed to assess the value that such studies would
add to situational awareness, transmission-dynamic model
parameterization, improved decision making, and better

understanding of the pandemic after the fact. If an assess-
ment concludes that serologic data provide significant
benefits over other forms of data, then investments should
be made for improving serologic assays, improving statis-
tical methods to interpret these assays despite imperfect
sensitivity and specificity, and ensuring surge capacity for
personnel to undertake them. The utility of serologic in-
vestigation of close contacts of early confirmed cases is more
clear-cut. Even relatively small cohorts of close contacts
could provide valuable information for the infection se-
verity pyramid—for example, upper bounds on the pro-
portion of infections requiring hospitalization.

5.7. Novel Surveillance Tools
Web-based cohorts,69 mining of managed-care organiza-
tion and hospital databases, and perhaps even surveys
conducted using mobile phones or other devices133 may
substantially contribute to situational awareness and deci-
sion making in future pandemics. The common feature of
many novel surveillance approaches is that once they are in
place, the additional cost to increase their coverage is rela-
tively small.

There are several requirements for these approaches to be
useful. Baseline data collected during seasonal influenza and
outside of influenza season are needed to validate and cal-
ibrate these systems. Concerns about the representativeness
of survey respondents must be addressed by targeting un-
derrepresented groups or by statistical adjustment, or both.
For approaches with high fixed costs, such as those in-
volving privately held hospital or other healthcare data-
bases, it should be determined whether multiple
applications of the data can justify the investment or
whether lower-cost arrangements can be devised. For rea-
sons described in the sidebar Combining Syndromic Sur-
veillance with Viral Testing, these novel tools will
contribute additional value if geographically widespread.

Novel approaches to processing data may also improve
the reliability of estimates of disease burden. Capture-
recapture methods, for example, were used in New Zealand
to estimate the coverage of different reporting systems.134

Further work on the statistical methods for data analysis
during emerging epidemics may contribute to more robust
estimates in future pandemics.

5.8. Surveillance in Developing
Countries
Surveillance in the developing world was limited in 2009;
thus, many countries made decisions without the support
of national or even regional data on the extent of infection
in their populations. Current efforts to estimate the overall
global impact of the pandemic are hampered by these large
geographic pockets of limited data. Some sentinel sites—
hospitals, demographic surveillance system sites, or entire
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cities—exist in many parts of the developing world, but in
2009, their data were not integrated and communicated
in a way that could provide disease burden estimates in
representative parts of the developing world. Assessment
of the ability of existing sites to provide a global picture
of pandemic spread, expansion of or development of
additional sites, and development of plans to share data
during a pandemic would improve the response to the
next pandemic, in addition to their ongoing benefits in
nonpandemic times. As in the developed world, these
sentinel data would be much more useful if accompanied
by virological and serologic testing of carefully designed
subsamples.1,61

Pandemic responses will always require decision mak-
ing with limited data. Good judgment and political
considerations will compel decision makers with sufficient
resources to err on the side of caution until the severity
and extent of transmission become clear. Moreover, the
changeability of influenza argues for a precautionary ap-
proach even once severity is established, as it could change
in an unpredictable fashion. Advance efforts to tailor
surveillance systems and analytic capacities to decisions
that must be made will reduce uncertainty and help de-
cision makers respond effectively despite any remaining
uncertainty.
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