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Abstract

Background

Denovo loss-of-function (dnLoF) mutations are found twofold more often in autjgacsum disorder
(ASD) probands than their unaffected siblings. Multiple independenbBnhutations in the same
gene implicate the gene in risk and hence provide a systematic, albeit arpatutorward for ASD
genetics. It is likely that using additional non-genetic data will enhancelitigyao identify ASD
genes.

Methods

To accelerate the search for ASD genes, we developed a novel atgoBithWN, to model two kinds
of data: rare variations from exome sequencing and gene co-exprasthe mid-fetal prefrontal and
motor-somatosensory neocortex, a critical nexus for risk. The algod#sts the ensemble data as a
hidden Markov random field in which the graph structure is determined bg ge-expression and|i
combines these interrelationships with node-specific observations, naemayidgntity, expression
genetic data and the estimated effect on risk.

—

Results

Using currently available genetic data and a specific developmental time pieriogene co-
expression, DAWN identified 127 genes that plausibly affect risk, ansetaof likely ASD
subnetworks.  Validation experiments making use of published targeteduessgng results
demonstrate its efficacy in reliably predicting ASD genes. DAWN also sstdéspredicts known
ASD genes, not included in the genetic data used to create the model.

Conclusions

Validation studies demonstrate that DAWN is effective in predicting ASD gandssubnetworks by
leveraging genetic and gene expression data. The findings reportedripicate neurite extensia
and neuronal arborization as risks for ASD. Using DAWN on emergin® A&quence data and gene
expression data from other brain regions and tissues would likely idemtifgl ASD genes. DAWN
can also be used for other complex disorders to identify genes andtawalkein those disorders.

=]

Keywords

Autism, Risk prediction, Gene discovery, Weighted gene co-expresstwork analysis, Network,
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Background

That genetic variation affects the risk for autism spectrum disorde®$\Sas been known for decades,
yet only recently has the complexity of its architecture come into focus [1{inDuhe past few years
a series of studies has been published, some analyzing copy numbats/gja], others rare sequence
variants [4-9], and still others common variants [10,11], whose datardgiibe explained if many genes
are involved in the risk for ASD. Our recent work estimates this number tdbatd,000 [1,9,12], a
remarkably high fraction of the known genes in the genome. To date, &afys,043 ASD trios has
identified a handful of the genes involved in the ASD risk. Extrapolatingpfiieese data would require
exome analysis of tens of thousands of families to identify even half of thegdsks, an infeasible



short-term goal with regard to sample collection and funding. Therefae tis an urgent need to
advance ASD gene discovery through the integration of complementargiuially relevant datasets.

The complexity of the ASD genetic architecture raises challenges, but ticpate there will be a
discoverable organization to these genes that will pave the way for deght® into genetics and
neurobiology. Support for this conjecture comes from recent arafls:15]. A recent paper [14]
has laid the foundation for these insights in two ways: by identifying braire gapression networks
as meaningful for organization and interrelationships of ASD genesbwintifying the region and
developmental periods in which these genes tend to coalesce to confef ASD, specifically the
mid-fetal prefrontal and motor-somatosensory neocortex (PFC-M&E).easoned that if this region
were a critical nexus for the expression of ASD genes, it would be tHegtelace to hunt for novel
ASD genes. Thus we take the results from [14] further by integrating syodata sets, BrainSpan
gene expression [16] and results from analysis of rare sequenatioa[12], to identify genes and
subnetworks in the mid-fetal PFC-MSC that likely underlie ASD risk.

To implicate genes in risk (predicted risk or rASD genes) we have dewtlpalgorithm named DAWN
(for Detecting Association With Networks, Figure 1). Building on the logic h8D genes cluster
within a co-expression network [14,15], the algorithm identifies ‘hot spaithin this co-expression
network at which multiple genes with evidence of ASD association from theexiata cluster together.
For these hot spots DAWN uses the evidence from neighboring geneisforce the ASD signal, while
in ‘cooler’ regions the absence of neighboring genes with evidenceSi# Association downgrades
the signal. By modeling these data, DAWN identified 127 rASD genes (Tabimdny of which are
novel. By analyzing independently generated association data [17kfdrset of these rASD genes we
validated DAWN by demonstrating its ability to delineate which genes will yield denovo mutations
and which will not. Importantly these results provide a framework for tadyeteequencing of new
samples to demonstrate involvement in ASD risk definitively and for neuragcdbassessment of
gene and subnetwork function. Moreover, this approach could Heedpp other gene expression data
in relevant tissues to identify additional subnetworks of ASD risk genes.

Figure 1 The DAWN algorithm. (A) Each node in the network represents a gene and each edge
represents pairs of genes with strong co-expression (absolutdatiorre > 0.7). (B) Orange nodes
indicate genes with strong genetic scores from the TADA t&S). Hot spots (i.e., clusters of strong
scores) are classified as NASD genes in the screening stage of thighalgaool spots (i.e. strong
scores in isolation) are not(D) In the final cleaning step, the nASD list is further refined to reveal
the rASD gene list. This step uses the TADA scores and features of thenkgtwcompute the false
discovery rate of each gene. FDR, false discovery rate; nASD, nletutism spectrum disorder; rASD,

risk autism spectrum disorder; TADA, transmission @ecehovo association.




Table 1 List of genes predicted to affect risk for ASD (rASD genes)

Range of FDR¢-values'

Number of dnLoF mutations 0-0.0025 0.0025-0.025 0.025-6.0
. CUL3, DYRK1A,9 GRIN2B,2d
POGZ, SCN2A 2 TBR124d
ADNP,? CBX4, CDC42BPB, ARID1B,Y ATP1B1, BCL11A, RIMS1®
COL25A1, DIP2C, DDX3X, CSTF2T, FOXP1,P ITGAS5,
1 LMTKS3, MED13L, NFIA, L1CAM,° NCKAP1, MBD5,2
RAB2A, PHF2, RNF38, PCOLCE, SCP2, SHANK?2,2
PPM1D, PRPF39, SETBP1, SPAST, SMARCC2, TCF3,
TROVEZ2, UBR3, ZMYM2 UNCS80, VCP
BANK1, Clorf95, ELOVL1, AGK, ARXK, ATRN, BBS10,° ACTL6A, ANKSIB, ASB8,
FCAR, LMCD1, SMC3, BEND7, C2CD3, CD34, BAHCC1, Clorf43,
PRIM2, PTEN,%9 SERINCS, CHMP2B, CLDN11, CNOT1, CASD1, CDC42EP4, DUSP14,
SMAP1, TNC, CRY1, DCAF11, DHX29, HCFC2, HIST1H3D, LYSVID3,
ZNF175, ZNF33A DYNC1I2, EIF3G, F3, FBXL5, MARK4, NAV2, PAMR1,
GDPD4, GMNN, HIST1H4B, PCNX, PSMG2, RU1,
KIAA1468, ITGB3BP, MAPKA4, SVIPD3, SPRY1, TNPO3,
0 MCM5, MAPT, MARCO, VASH1, ZNF410

METTL14, MRPS26, MRPL44,
MUDENG, NCOR1, NDUFBS,
NIF3L1, NR2F1, OR2AK2,
PCIF1, PDLIM1, RAD21,
RAD51AP1, RBBP9, REXO1,
RNF168, SCD, SLC22A15,
SMG7, SPAG17, STXBP1,°
TBLIXRLY TSR1, ZFAND2A

*ASD genes are displayed by range of False Discovery Rate (g§BRIue; the 3 columns correspond to genes significantavgenome-wide correction at levels .0025, .025,
and .05, respectively. Genes with FDR < .05, but validatimre less than .90 were not includédene with strong prior support for affecting risk for ASPgene with modest
prior support for affecting risk for ASI¥syndromic geneflgene with ade novo loss-of-function mutation in the [17] stud§RIMS1 has onele novo loss-of-function mutation,
netscore = 107 (95th percentile), and FDR of .077 exceetii@gutoff.



Methods
Gene expression and co-expression

The data analyzed were produced as previously described [16]aamedi lon the same quality control
and quantile normalization. After total RNA was extracted from tissue sanmpbe® expression was
assessed using the Affymetrix GeneChip Human Exon 1.0 ST Array pla®latform GPL5175),
yielding high-quality comprehensive data. The data were downloaded thhe National Center for
Biotechnology Information Gene Expression Omnibus (GEO accessionaryi@iEO:GSE25219]).
Expression data from the core probe set were used in co-expresgtysis of most genes. For genes
CHDS8, FLG, FREM3, FRG2C, LMTK3, THSD7A, UBN2 andZNF594, however, data from the extended
probe set were utilized. We utilized measurements from PFC-MSC, anali4j6§1 unique transcripts
[16]. To investigate mid-fetal development we targeted post-conceptieksn®—24, which covers time
periods 3-6 as defined previously [16]. In our analysis, we used vedapping windows: periods 3-5
(post-conception weeks 10—19) and 4—6 (post-conception weeRg1&4th 10 and 14 brains available,
respectively.

Gene co-expression was measured by the Pearson correldietiveen pairs of genes. To obtain the
co-expression between a pair of gerésand Y, multiple observations of the joint expression %f
andY are essential. These replicates were obtained in two ways, by measurem&negdY from
different regions of the same portion of the brain, and from the samernrégidifferent brains. For
periods 3-5 and 4-6 there were 107 and 140 replicates of expressigene, respectively (Additional
file 1: Table S1).

Gene networks

Gene networks were inferred from the pairwise correlation matrices ubiagsoftware package
Weighted Gene Co-expression Network Analysis (WGCNA) [18,19]. A shitylamatrix was
calculated from the absolute correlation of gene expressipma{sed to a power. For each pair of
genes, a topological overlap measure was calculated based on thenagjadrix. From the implied
dissimilarity between genes, average linkage hierarchical clustering wed to construct the
dendrogram. Modules were chosen using dynamic cutting of the bran€lles resulting clustering
tree. We set the minimum module size to 30 genes and the minimum height for mergidemat
0.15. Closely related modules can be merged using the adjacency of aigen@ie., the first
eigenvectors of the expression matrix for a module). To capture saliatdrés of the gene
co-expression network fully, modules were built independently for ¢&aoh span (3-5 and 4-6), and
within each period of development modules were chosen using two diffeherices of the power
parameter (1 and 6); see Additional file 2: Figure S1, Additional file 31€T82 and Additional file 4:
Table S3 for details. The first step of the DAWN algorithm (Figure 1) invelgealuating these four
representations of the gene expression data. Multiple representationeassary because a single
partition of genes into highly co-expressed modules fails to capture thegfigihborhood of all genes;
using multiple sets of modules avoids missing signals from risk genes that #re baundary between
two modules. The goal here is for every gene to have its nearest neigimiotuded in a common
module for at least one partition of the genes.

Within each module we clustered highly correlated genes to create multi-gdas.rfeor these analyses
the tree was cut at heigit| = 0.75 to yield the genes in a multi-gene node. Once the complete
set of nodes was defined (both single-gene and multi-gene), a netvasrkamstructed by connecting
nodes that are correlated at the next level of strength{ 0.7). We chose a threshold of= 0.7 for

the network because it is a widely used threshold in the literature and it pbtie desired network
density. Specifically, we found that= 0.6 produced a very dense network ane- 0.8 a very sparse



network, each unsuitable for the proposed analysis. Our motivatiorrdeclpstering highly correlated
genes as multi-gene nodes was to create a sparse network that wasniwatdd by local subsets of
highly connected genes. By grouping these subsets of genes into mudtiagdas, the broader pattern
of network connections becomes more apparent. Naturally to work withingbdathm as a whole, the
threshold for multi-gene clusters must be greater than 0.7 Fer0.8 only a small number of genes
would be clustered, however, and therefore .75 was chosen as aaoispbetween these extremes.

Genetic data from whole-exome sequencing studies

Transmission ande novo association (TADA) scores [12] (Additional file 5: Table S4) were claltad
from the following data: all reportede novo mutations from 932 ASD families consisting of trios of
affected offspring and two parents from four studies [4,6,8,9]; transtnigtie variants from 641 of these
families from two studies [4,9]; and case-control data from the ARRA Aug&guencing Consortium,
consisting of 935 ASD subjects and 870 controls [20]. In addition we imduevo de novo loss-of-
function (dnLoF) mutations obtained from a set of 44 trios [5] and 56 tfdd$. [For a complete list of
de novo variants utilized, see [14]. Each missense mutation was classified into aryadégamage to
the protein based on its predicted effect on the coding sequence usyihBo2 [21]. Loss-of-function
(LoF) and ‘probably damaging’ missense variants were analyzed byATAdth of which showed
enrichment in probands for these data. In addition to finding strong statistipport for a few novel
ASD risk genes [12], TADA found significant enrichment of genes wittal§ P values compared with
random expectation, indicating there are more genes affecting risk fOry&Eto be discovered, even
from these genetic data.

The TADA P values were converted té-scores using the standard normal probability integral:
Z=3"11-P)

where ® is the cumulative distribution function of standard normal distribution. PraoviElgene is
not associated with ASD, it follows without further assumption thatAhgcore is standard normally
distributed. When a gene is a risk gene, fhacore approximately follows a normal distribution with
meany > 0. A Z-score is associated with each node. For multi-gene nodes this is the minfmum
value of all genes in the node.

The DAWN algorithm

From a statistical perspective, DAWN is based on the ‘screen and g@eaniple [22]: first screen the
data to find all potential signals (network ASD or nASD genes), and thieiy nsore stringent criteria,
clean the list so that it includes only those signals that meet more traditionalecfie significance
(rASD genes). This basic strategy has been shown to increase podigetcontrol error rates in a
similar high-dimensional setting [22].

Screening stage

DAWN relies on a hidden Markov random field (HMRF) to identify clusterspogsible risk genes
embedded in the entire expression network (Figure 1, Additional file 6r&i§R2 and Additional file 7:
Text S1). The true state of each node (rASD risk or not) is hidden, BUTAIDA score associated with
gene node can be observed. Clusters of nodes with high TADA scoggests that these nodes are
likely associated with risk. The HMRF network algorithm works as follows: génes are organized
into highly correlated modules based on gene expression using WGCNAhd2adjacency matrix
defines a network including edges between genes with absolute correatieeding a fixed threshold,
(3) this model examines the initial signals provided by the nBescores to determine if high scores



tend to be clustered in the network and (4) the fitted model then infers the miabieigfor a node,
namely whether it is related to ASD risk or not. This label is determined bas#uedtrscore of the
node and whether or not the node has many neighbors with lérgeores. By using a number of
computational approximations, including the iterative conditional mode, the Inpademeters can be
estimated efficiently. Consequently we can estimate the probability a node ¢éatsdavith ASD risk.
For related literature, see [23,24]. We use a posterior probability of 0.5etuifg nodes potentially
associated with risk and call the genes in these nodes network ASD (ngesie}.

As described earlier, tightly clustered genes are collapsed into multi-geles.n®he adjacency matrix
entries for these nodes are defined based on the average linkagemetdes. Each multi-gene node
is assigned a node score defined by the mininfavalue of all genes within the cluster. Finally, the
HMRF analysis follows as for single gene nodes. In this way, the HMRFiéthgo can be applied to a
much smaller set of nodes with an adjacency matrix that is far less denselgated. Based on results
from simulations and data analysis, it appears that the HMRF approach éspowerful at detecting
clusters of risk nodes when multi-gene nodes are incorporated into thélaigo

Cleaning stage

After running the HMRF model, the goal at this step is to winnow the nASD listdmaa smaller set of
genes that are highly likely to affect risk on the basis of the genetic ewedesing a false discovery rate
(FDR) procedure [25]. We call these probable risk (rASD) genegnaximize power to discover rASD
genes in subnetworks dense for genes affecting risk, we use a dratiidysis. Each large multi-gene
node defines a stratum (more than ten genes), and we fit a Gaussian mirtleeto the distribution
of TADA Z-scores to estimate the fraction of risk genes present in the multi-gene2gjdd he larger
this fraction is estimated to be, the larger the number of genes determined t&Gbegénes. Thus
this FDR procedure garners power by exploiting the heterogeneity mtecess multi-gene nodes and
modules, while still controlling the error rate. Then, for all remaining nASDege which includes
small multi-gene nodes, the distribution of TADA test statistics is evaluated by fittexgnixture model
to the entire set of statistics (Additional file 8: Figure S3). The model is thextin detail in Additional
file 7: Text S1.

The DAWN analysis is performed for power 1 and power 6 modules angeiods 3-5 and 4-6 PFC-
MSC. Thus there are four representations of the gene expressionrketho select a unique set of
rASD genes we use the minimum FDR across four representations.

Permutation experiments

To evaluate DAWN we performed two permutation experiments. Each soughintonate DAWN's
performance by diluting the signal for association in two ways: () by isgjpey smallP values from
risk genes and (lI) by moving risk genes from clusters of genes with smalalues. All of the
permutation experiments were performed at the node level. Hence singiengdas and multi-gene
nodes were treated interchangeably in what follows.

Experiment I: diluting signals

1. Randomly select a proportionof nodes that have® values less than or equal to 0.1. The
proportion! is set to be equal to 0.2, 0.4, 0.6, 0.8 or 1.

2. Randomly select the same number of nodes that Ravalues greater than 0.1. Permute fhe
values of selected nodes with the nodes selected in step 1.



3. Run the HMRF approach with the permuted data and estimate the parametkesmbdel.
Record the number of genes identified that have at least one dnLoRtvaria

4. Repeat steps 1-3 20 times for each

Experiment II: diluting the clustering of signals in the network

Replace Step 2 above with the following:

2. Randomly select the same number of nodes that lravalues greater than 0.1. Permute the
selected nodes (i.e., switch both tRevalue and the gene labels associated with the pair of nodes).
With increasing dilution, this effectively removes the correlated nature dithrl.

Network score

To summarize genés position within the network, a network score was calculated as:

Si = Z |7"1'j| X Zj
JF
in which both variables are given hard thresholds (0 if correlaigi < 0.7 or if Z-scorez; < 1.2).
The Z-score is obtained from the TADA value.

Connectivity

To evaluate the connectivity of the rASD gene list we performed a permutsgsin All genes
expressed in the brain that fell within a module and had exome data were ekkntlid,223 genes
matched these criteria including all 127 rASD genes. The genes weré §yrirautability (based on
size and GC content). Random lists of 127 genes were sampled repeattutire constraint that they
be approximately equal in mutability to the original list. We compared the mean ctivityeof each
list of 127 to the true rASD list to obtain & value for connectivity.

De novo probability model

We estimated the probability that a true ASD gene has at least one dnLoF mutatdosample of
2,500 trios by extrapolating from available trios. In a sample of 1,043 trig&désovo LoF mutations
were observed, involving 130 unique genes, with 9 genes incurring mudtygllets and 121 incurring
single events [14]. Extrapolating this process to 2,500 trios we expecatt &#2 de novo LoF
mutations, involving about 311 unique genes, with about 13 genes ingumittiple events and 298
incurring single events. Based on previous analysis, we anticipate &0&ubf the single-mutation
genes and most of the multi-mutation genes are true ASD genes [14]. GCemnslggwe predict
approximately 162 (or slightly fewer) true ASD genes will have at leastderm®vo LoF mutation in a
sample involving 2,500 trios. Assuming there at least 1,000 true ASD geBgsefich ASD genea
priori, has approximately a 15-%6chance of having a dnLoF mutation in a sample of 2,500 trios.

Protein-protein interactions

A literature-based protein-protein interaction (PPI) network was cartstitby combining interactions
from the following databases: BioGRID [27], HPRD [28], MINT [29]ntAct [30], KEA [31],
KEGG [32], SNAVI [33] and MIPS [34]. Only interactions from publicati®that reported ten or fewer



interactions were retained. After combining the binary interactions fronettiatabases by converting
gene IDs to EntreZ Gene Symbols the biggest connected component ecsoadurther analysis.
rASD genes were seeded in this network and Dijkstra’s shortest pattitailg$35] was used to extract
a subnetwork that connected the seed genes using a path length ofdheemtermediate and two
links) [36]. The natural clustering of the obtained subnetwork wastegdeasing the organic layout of
the graphic software yEd [37]. The relative local clusters were manigehtified.

Functional enrichment analysis with Enrichr

Seed rASD genes from the identified clusters of the PPI network, togettiethe intermediates from
each cluster, were fed into the online gene enrichment analysis tool E{8&}h Enrichr has 36 gene
set libraries and performs gene set enrichment analyses using Fiskact test (FET) with Benjamini
Hochberg corrections [25]. We focused our enrichment analysisiectibnal annotation from gene
set libraries created from the gene ontology (GO) [39] biological m®¢BP) tree, the gene ontology
molecular function (MF) tree and the mouse genome information (MGI) molephl@notype (MP)
browser ontology tree [40]. Enrichr [38] and its accompanying datzbare online [41].

Results and discussion

Discovering network and risk genes using DAWN

To search for clusters of possible risk genes embedded in the entiressipr network, DAWN
models the interrelationships amongst nodes of a network, in terms of risk, st combines such
interrelationships with node-specific genetic signals for association @-igurAs part of this process,
DAWN assigns nodes a posterior probability of being part of an ASDemrk. Genes are defined as
nASD genes if their posterior probability from the hidden Markov analysisses the threshold of 0.5.
This results in 2,323 genes being classified as nASD genes (Additional Tikbte S4).

To illustrate the efficacy of DAWN for this step, we computed the networkestmreach gene, which
guantifies the strength of the genetic signal from the neighboring genes iretivork. The distribution
of these scores demonstrates that nASD genes are indeed significarglgonoiected to other genes
potentially affecting risk when compared to genes not in this set (Methatt#tidnal file 3: Table S2;
and Additional file 8: Figure S3; Wilcoxon rank tegt,< 10~16).

Once genes are separated into the nASD and non-nASD groups (¢emisgy step of the screen-and-
clean algorithm), DAWN performed a further evaluation of the genetic datattétigoal of finding the
subset of nNASD genes with compelling evidence for ASD risk (cleaning.siBpe cleaning step has
two levels, an FDR procedure tailored to the network structure, the gegetie, nd an evaluation of
sensitivity of the FDR results to network structure. After performing the Fibétedure, 146 genes
haveq < 0.05 (Additional file 5: Table S4).

To examine the robustness of these predictions to network structure,rfeenped a cross-validation
experiment in which we iteratively removed a fraction of the genetic signalsrerevaluated the
prediction of risk genes. For each iteration, we randomly removed thdigeaignal from10% of the
rASD genes and then reran the DAWN algorithm to determine which of the rémgaiASD genes
were identified as predicted risk genes by the algorithm. A ‘validation scepecifically the fraction
of iterations for which the gene is included in the updated list, showed that rhibet PASD genes are
robust to the set of genetic signals present (Additional file 5: Table Bl 86% achieving a
validation score 000% or higher. However, for the othdrt% of genes originally predicted to affect
risk, the results depended on a small number of neighboring genes aadevesitive to their removal.
These genes were excluded from the final rASD list because theiciassn was judged to be
non-robust, leaving 127 genes that were predicted to affect riskg(Tab



The rASD genes had striking co-expression (Figure 2), significantfgrdifit from a random set of
brain-expressed genes with similar attributBs< 0.000001; Methods). On the other hand, the network
scores for the rASD list are not significantly greater than other nAS2géhdditional file 8: Figure
S3), implying that inclusion in the rASD list requires a high network scoreplembliwith at least a
moderate level of genetic evidence for association (Additional file 9: Eigd)).

Figure 2 Network of risk ASD (rASD) genes. These genes met the false discovery rate threshold
of .05. The intensity of the red reflects the magnitude of the netscore basBDA statistics from
neighboring genes. Large nodes depict genes that have at leadloole mutation.CUL3, DYRK1A,
GRIN2B, POGZ, SCN2A and TBR1 are genes with multiple dnLoF mutations. Edges connect genes
with absolute correlation of .7 or greater based on periods 3-5 or 4£6Fdde novo loss of function;
rASD, risk autism spectrum disorder; TADA, transmission dadovo association.

Evaluating how well DAWN works

To assess DAWN's performance we focused on the number of gena#figt by the algorithm that
have at least one dnLoF mutation in sequenced probands, since theA$Pr genes are highly
enriched for such mutations (Table 1) and o%¥e%; of such genes are independently predicted to be
ASD risk genes [9]. If DAWN were using both the network (gene exgitgg and association (exome)
results effectively, we would expect that diluting either of these featwedd diminish its ability to
detect these dnLoF genes. To evaluate this question we conducted twatg@ion experiments, either
diluting the association by separating likely risk genes from their smRallalues or diluting the
network by breaking up clusters of genes with sm&llvalues and randomly distributing them
throughout the network (Methods). The degree of dilution varied 0&#rto 100%.

For both dilution experiments, we found that the performance (i.e. the nuofbénLoF genes
identified) decreased in almost direct proportion to the degree of dilutidditianal file 10: Figure
S5). This result demonstrates that DAWN is sensitive to both the ASD atisacsignal (exome) and
the location of a gene within the network (gene co-expression) in its seledtré«&D genes (Figure 1,
Additional file 6: Figure S2).

Conversely, DAWN does not require overwhelming prior evidence ebaation to identify rASD
genes. To test this we considered six rASD genes that have multiple dnLiafions leading to a very

low prior P value calculated by TADA (Table 1). By downgrading these six genes tfestinLoF
mutations, the recalculated TADR value was increased by several orders of magnitude, as expected.
Yet, on rerunning DAWN with these highét values, all six of these genes were still predicted to affect
risk, clearly indicating that they were pulled into the rASD gene sets basdbeostrength of their
connections to neighboring genes with evidence of ASD risk.

DAWN does require genes to be connected in the adjacency matrix. Yegtssign modules can create
artificial boundaries that separate some gene clusters. For this reasased four different modular
representations of the gene expression network in DAWN. When geaesekected as rASD genes,
closer inspection reveals that they typically share a module with most (or aleoftop 20 nearest
neighbors for all representations. Some genes, however, appeakS&s genes for only one
representation and are often separated from several of their nheaghbors for the other
representations. The rASD gei@lANK2 provides a good example. In periods 4-6 PFC-MSC,
SHANK2 was in a module with four other rASD genes for one representation of timeredata and
was identified as an rASD gene; for the other representation, hovieewass in a module with no other
connecting rASD genes and was not detected. For this reason we belgessential to use multiple
modular representations of the gene co-expression network.



Validation of rASD genes
Analysis of resequencing experiment

On average half of all dnLoF mutations in ASD probands correspond ¢oABD genes [9], hence
one way to evaluate the rASD list is to compare it to a list of genes with dnLoF musatientified
based on sequencing of independent ASD families. Calculations bassdmrcalde novo rates and
a new set of 2,448 ASD trios show the chance of seeing a dnLoF mutationartieupar ASD gene
is about15%, although this varies depending on gene size and relative risk. Carghgunost true
ASD genes will have no dnLoF mutations, even in this relatively large stundlyttaus direct validation
of individual genes in the rASD list is infeasible. Nonetheless they carvakiated as a group for
enrichment of dnLoF mutations in additional trios. Under this scenario a dongpexperiment has
already been performed, namely targeted sequencing of a sample ofrfiy44%ith molecular inversion
probe sequencing (MIPS) of 44 carefully selected ASD candidatesgbraceforth known as the MIPS
experiment [17]). Ten of these 44 candidate genes are also on theli®&3hus they can be evaluated
to determine if they had an unusually high number of dnLoF mutations in the MipSieent.

In the MIPS experiment, eight genes incur at least one additional dntesft and six of these are on the
rASD list (ADNP, ARID1B, DYRK1A, PTEN, TBL1XRandTBR1), demonstrating significant enrichment
(P = 0.0007). Of the two genes incurring additional dnLoF but missing from the rASD@stD8 is
an obvious ASD gene [17], but its expression levels were derived &dess reliable extended probe
set, while the other analyzed genes were present on the core prai¢heeBrainSpan exon array data.
CHD8's expression is not tightly correlated with that from other genes, hernseskcluded from the
NASD gene set. The other gel@@NNB1, is an nASD gene, but it has a TADR value of 0.3Ga priori
and hence DAWN does not predict it as a risk gene. Of the four rASi2géhat did not sustain dnLoF
mutations in this study, three are known ASD ger@dl(3, FOXP1 andMBD5) and one is a syndromic
gene for which ASD is sometimes a comorbid outcoSETBPL).

In this experiment DAWN was able to distinguish the genes that will accumulateineoF mutations
better than any existing methods (Figure 3, Additional file 11: Table S5). DAéntified two rASD
genes for which no dnLoF mutations had previously been observed; MI® experiment new dnLoF
mutations were identified for both of thes®(% success rate) compared with the 26 genes with no
previous dnLoF mutation that were not on the rASD gene 4%t éuccess rate, FEP = .008, odds
ratio= oo ). DAWN also outperformed the other methods for genes with previous Elmuatations:
new dnLoF mutations were identified for four out of eight rASD geri@§4( success rate) compared
with one out of eight that were not on the rASD gene list% success rate, FEP = 0.14, odds ratio
6.16).

Figure 3 Analysis of MIPS validation experiment. (A)First 44 genes with priode novo mutations
were sequenced for 2,448 additional trios. These genes weredatasssfied by whether or not they had
a prior dnLoF mutation, and whether or not they were on the DAWN rASDy&s$:(red, no: blue). For
each category, the percentage of genes that had a dnLoF mutation imtheoseds depicted(B) For

a given gene, the probability of observing a dnLoF mutation in 2,500 pdsbezaries. This probability
is compared for four types of genes: a randomly chosen gene ancttassdications of the genes from
the MIPS experiment including: (i) all 44 genes, (ii) those 16 genes withioa gnLoF mutation and
(iii) those 10 genes on the rASD list. dnLod®e novo loss of function; rASD, risk autism spectrum
disorder.

From the results of the original experiment, we conclude that many of theeddsgselected for the
MIPS experiment are likely ASD genes because the rate of dnLoF mutationsréesthan would be
expected even if all 44 were true ASD genes. Still DAWN appears to doedbrietter (Figure 3B).



We conjecture its better performance is largely due to identifying ASD geitbshigher relative risk,
compared to the average ASD gene. Genes with a larger relative risk aeelikedy to have dnLoF
mutationsa priori [12], an expectation also supported by the MIPS experiment.

Previously identified autism spectrum disorder genes and probable reskes

Of the rASD genes nominated (Table 1), six have been implicated for ASmisike basis of multiple
dnLoF events in exome sequencing studiedl(3, DYRK1A, GRIN2B, POGZ, SCN2A and TBR1).
Seven others have been identified as ASD genes on the basis of pubtiskarth [42] (three syndromic:
L1CAM, PTEN andSTXBP1; two with strong support from copy humber and sequence stutliBf5
and SHANK2; and two with equivocal evidenceBBS10 and FOXP1). This demonstrates significant
enrichment (FETP < 10~%) for nominal ASD genes in the rASD list.

Within the rASD set (Table 1) are 36 genes containing a single dnLoF mutatawarkfrom prior exome
sequencing studies [4-6,8,9,14], demonstrating significant enrichmefit fF< 10~15) compared to
the full list of 116 such genes with quality expression data for the mid-fét&-RISC. Moreover three
more rASD genes were found to have a dnLoF mutation by the MIPS exper{fRlnlXR1, ARID1B
and ADNP). These results are of note because of the expectation that rob@filpf these genes are
involved in risk [9] and DAWN does a better than expected job at identifyiegeh0%.

Functional coherence

Next we reasoned that if the rASD list were meaningful, it should be esdlidior biologically
meaningful, ASD-relevant processes. We focused on PPl netwathish are independent of the
co-expression networks we analyzed but have the expectation thaaciier genes will have
correlated expression. In addition to forming a highly significant netwdrknteracting genes
(Additional file 12: Figure S6), the rASD genes in the PPI network fall ireeesal natural clusters
(Figure 4). Clusters C1, C2 and C4, accounting for a large proportidheogenes, share related
functional categories. Specifically, these three clusters are involvednsdriptional regulation (see
the GO BP and GO MF categories in Additional file 13: Figure S7). Cluster @&dgionally enriched
for chromatin remodeling terms in GO BP, while cluster C4 is enriched for RNynperase |l-related
categories in GO MF. Additionally Cluster C7 relates to regulation of translasasean in both GO
BP and GO MF. Together these results show that dysregulation of ggmession and coordinated
co-expression is a key risk factor for ASD and they further suggesedulation has an effect early in
development. Dysregulation of coordinated gene expression is consistera wide range of ASD
studies [43].

Figure 4 Clustering by enrichment and protein-protein interaction (PPI). The rASD genes are
seeded into the PPI network presented in [6], represented by red,nattb size proportional to
the number of connections. The blue nodes are immediate intermediate pr8&JinsThe network
was clustered using organic clustering methods implemented in yEd [44] rA8Cautism spectrum
disorder.

Among other processes, clusters C3, C5 and C6 map onto neuronal nmgaatiofunction, both
thought to be involved in ASD risk [45,46]. Cluster C3 is enriched for GOdafegories involved in
cell adhesion and cell migration and for abnormalities in cell migration in MGI ™M cluster shows
strong enrichment for the KEGG category of focal adhesion (HSAOU5CIuster C5 is enriched for
GO MF categories around ligase activity, including ubiquitin-protein ligaieigc This cluster shows
a similar enrichment in KEGG, for ubiquitin-mediated proteolysis (HSA0412@)ipusly implicated
in neuronal function and ASD risk [47]. Cluster C6 is enriched for GO ddEegories around protein
scaffolding and receptor signaling. This cluster is also associated widradednportant MGl



phenotypes, including lethality and abnormalities in neuronal morphologgpsiz transmission and
plasticity, and learning and memory.

Subnetworks

The set of NASD genes, and especially the rASD genes, define suvketaf co-expression, which
can be used to focus further neurobiological research (Additiondbfilkable S4). We highlight four
subnetworks for illustration: one centered BREN (Figure 5A), which is a syndromic gene in which
mutations are known to increase ASD risk; one centere@©XP1 (Figure 5B), encoding forkhead
box P1, for which there is soreepriori evidence for involvement in ASD risk [48]; one centered on
SPAST (Figure 5C), encoding spastin, which has no known involvement in ASD aisd one centered
on VRK1, encoding vaccinia related kinase 1, an nASD gene that has a very éfiglork score and
which did not pass the threshold for the rASD list (Additional file 14: Figs@g.

Figure 5 Gene subnetworks for thePTEN, FOXP1and SPASTgenes. Figure shows all rASD genes
with absolute correlation of .7 or better wifA) PTEN, (B) FOXP1 and(C) SPAST. Intensity of red
color reflects the magnitude of th&-score from the TADA statistic. Large nodes with labels depict
genes that have at least one dnLoF mutation recorded in the currenulieeexcepPTEN). ANK2,
CUL3, DYRK1A, SCN2A andTBR1 are genes with multiple dnLoF mutation&NK2 is included along
with rASD genes because it has two dnLoF mutations.

Although PTEN is a known ASD gene, existing whole exome sequencing data do not yéat@ro
compelling evidence for its involvement in risk (uncorrected TAPA= 0.0025, insignificant after
accounting for testing genome-wide). After DAWN analysis the FpPR 0.0007, which has been
corrected for multiple testing and therefore represents much strongeneeidThe additional evidence
for association comes from the tight co-expressiofP®EN with other genes likely involved in risk
(Figure 5A). While the complete neurobiological underpinnings of this tightlynected network are
not obvious, proteins arising from several of these genes are ktwkhave a common function, neurite
extension. For example the protein producNGKAP1 plays a role in the protein complex WAVEL, an
actin scaffold protein complex that regulates neurite outgrowth [49]. Thteim product ofPTEN
likely plays a role in neurite outgrowth by negatively regulating PI3K signadind affecting neuronal
polarization [50]. PTEN could also play a role through the ubiquitin proteastnction [51]. An E3
ubiquitin ligase, Nedd4, and PTEN play complementary roles: Nedd4 koagkihcreases levels of
PTEN and decreases axon branching; the branching pattern carcdnesnexd by loss of PTEN
expression. Cullin RING ligases also play a role in arborization, with lossed€ti.3 protein product
increasing dendritic arborization [51]. Final§MAP1 encodes ARFGAP1, which in part functions to
control trafficking of GABA transporter-1, a protein enriched at fteuextensions in certain
neurons [52].

FOXP1 is a transcriptional regulator when it heterodimerizes with FOXP2. MutatioROXP2 have
been shown to impair language development, specifically causing developapatda of speech [53,
54]. Until recentlyFOXP1 was not known to affect language abilities or behavior, but recemtriep
[7,55,56] suggest disruptions of the gene could cause cognitiverttidn and ASD, sometimes with
language impairment [48]. The evidence, however, is not concluswe.the basis of the DAWN
analysesFOXP1 hasq = 0.0083, strong evidence it plays a role in risk, especially when considered
with other independent evidence (reviewed in [48]). Notably it is cotatedirectly and with substantial
correlation (r| > 0.7) to five genes with at least one dnLoF event in ASD probands (FiguyediB
which two are known ASD risk geneSCN2A andANK2. What role or roles these genes play to effect
this coordinated expression is not obvious from the neurobiologicaltlitera



Certain mutations iI8PAST are known to cause hereditary spastic paraplegia. In some cases, nautation
in SPAST (also known asSPG4) can affect cognitive function and result in developmental delay
syndromes [57], as well as incompletely penetrant hereditary spas@plegia later in life. Its
subnetwork is notable (Figure 5CHPAST is directly connected with 12 genes having at least one
dnLoF mutation and three of those genes are known ASD risk genes rdteéinproduct, Spast, severs
microtubules and disruption of this function appears to generate a risk dogditary spastic
paraplegia [58]. It also interacts with protrudin to induce axonal neudtgrowth [59]. This function,
together with its direct connections in the network to other genes involved unit@eextension
(NCKAP1 and CUL3), suggest at least a portion of this network could affect ASD risk tjinou
improper neurite developmerPAST and its subnetwork deserve further study for their role in the risk
for ASD.

Finally, an interesting case ¥RK1. Measured by the network score, it is the gene most connected to
rASD genes (Additional file 14: Figure S8). VRK1 has diverse fun&j@rguably most fundamental

is regulation of cell cycle. Moreover mutations\WRK1 have been implicated in neuronal development
and maintenance, including cognitive impairment [60]. There is essentialjgnetic evidence for its
involvement in ASD (TADAP = 0.572). Therefore, although it is an nASD gene with the highest
network score and intriguing neuronal functions, it does not make t8®m#st (¢ = 0.81).

Functional interpretation of subnetworks

When looking at the genes comprising the two subnetworks given in Figp#&s, it is striking how
many genes play some role in the regulation of neurite extension and atlworizindeed two other
predicted risk genes are known to affect this process at a basic leamlelyn CDC42EP4 and
CDC42BPB, both interacting with CDC42 (Figure 2), which plays a key role in neurite
initiation [61,62]. These genes are not highly correlated in the PFC-M&@\ey cannot occur in the
same subnetwork, although they are known to serve the same fun@in@42 activates thaNVAVEL
actin scaffold complex, includindNCKAP1 (Figure 5A,C), initiating neurite outgrowth. Notably
expression ofCDCA42BPB is highly correlated with expression ™AV2, a gene known to impact
axonal outgrowth [63]. Being in a subnetwork centered\#\W2, its expression is highly correlated
with a substantial set of genes (Additional file 5: Table S4), many of whiske Isome role in neurite
extension and neuronal arborization, specifica@lljRN, CDC42BPB, L1CAM, MARK4, SHANK2,
MAPT andSTXBPL1 [64-68], although many play other roles in cellular maturation and function.

From this enumeration it appears as if a large fraction of predicted risksgaffect neurite extension
and neuronal arborization. On the other hand, it could be that mang gémesome role in this critical
feature of neuronal development and the number identified here is rer thian we would expect by
chance. We therefore formally evaluate the conjecture that the rASD listiched with genes related
to neurite outgrowth. For this evaluation we turn to unbiased and indepeddém specifically
functional annotation data from GO. We focus on the GO term for the Greprojection development’
(GO:0031175), which is a biological process and also a synonym &uréam outgrowth’. The list
annotated with this term or one of its descendants in the GO hierarchy com@ingnique genes,
including 10 out of 127 rASD genedBBCL11A, FOXP1, ITGA5, L1CAM, MAPT, PTEN, SPAST,
STXBP1, TBR1 and TNC). Compared to random sets of 127 brain-expressed genes, the rAS® lis
significantly enriched® = 0.032, based on 1,000 draws).

Next, it is reasonable to ask if the ten rASD genes GO identified as functiore#ited to neurite
outgrowth are functionally interrelated to other rASD genes. To addrasgubstion we identify rASD
genes directly connected via the PPl network with the ten GO-identified rASisy Using the PPI
network provided in [69], we obtained a network of 26 rASD genes (#althl file 15: Table S6), which
is significantly enriched (Figure 6A; = 0.002, based on 1,000 draws). Finally, when we examine the



list of rASD genes separated in the PPI network from genes annotateeliiye outgrowth by at most
one step, i.e., rASD genes that interact with a gene annotated by neuritevatlitgthe resulting list
includes 68 rASD genes (Additional file 15: Table S6) and is again signtficanriched (Figure 6B,
P =0.001, based on 1,000 draws).

Figure 6 Predicted risk genes functionally related to neuron outgravth. (A) Ten rASD genes are
GO-identified for neuron outgrowth and 16 additional genes rASD gareedirectly connected via the
PPI network.(B) Note that 68 rASD genes are either GO-identified for neuron outgrowsiemarated

in the PPI network from genes annotated by neurite outgrowth by at mestep. PPI, protein-protein
interaction; rASD, risk autism spectrum disorder.

DAWN'’s limitations

Both genetic evidence and gene expression evidence are requiradifir gene to be identified by
DAWN. In the screening stage, a gene can only make it onto the nASD list ifigtily correlated with
multiple genes with moderate genetic evidence for association. Thus a loaeviiara small TADA
P value cannot make it onto the nASD list. Next in the cleaning stage the subtbet 0ASD genes
that have genetic evidence for association are upgraded to the rASDHistsdmmary highlights two
limitations of DAWN: (i) a risk gene cannot be discovered if there is not soerestic evidence for
association and (ii) a risk gene cannot be detected if it does not appeaeiwork of other risk genes,
based on the gene expression network in use. Both of these conditiofesldar a number of reasons,
not all of them biologically interesting. For example, the quality of sequentditg could be poor due
to low coverage, the power of the genetic test could be poor due to inenffgample size or the wrong
gene expression data could be utilized, yielding an irrelevant networker @tssible limitations to
DAWN are biological. For example it is possible that risk for ASD arises fdysfunctional neuronal
circuitry that spans distinct regions of the brain, such as from the haidlimto deep layers of the
PFC [70]. Indeed, different genes could contribute to a single ciraittee co-expressed at the circuit
level, but not in the same tissue. If this were the case, then co-expré#giomation in a specific tissue
for these genes is irrelevant and DAWN would fail to capture this asgeX$Db risk.

For these and other reasons, DAWN cannot possibly capture the bAlRDfgenes. Indeed, as noted
in [14], it is unreasonable to predict that the mid-fetal PFC-MSC is the osyis for ASD risk genes.
Underscoring this observation, strikingly absent from the rASD sed@me genes known to affect risk
for ASD. For instance the neurexindRXN1, NRXN2 andNRXN3) and neuroligins LGN1, NLGN3
andNLGN4X) are either known to affect risk or have been implicated in risk on the basisaosequence
mutations and copy number variants (reviewed in [71]). These proteinagrass the synapse to play
a critical role in its development [72]. There could be several reasbgghese genes are not found in
the rASD list. They might not be captured effectively by current exongeisecing methods, in which
case the genetic data cannot produce stRallalues. Indeed TADAP values for all of these genes
are unimpressive [12]. If many genes underlie risk for ASD, as temealyses suggest, the power to
detect a ‘genetic signal’ for association is low for each particular geneoutitvery large samples. In
addition, DAWN draws strength from the connectedness of genes omadliedf their co-expression. If
genes do not have a substantial network score, then they will not bel@ttin the rASD list. In this
regard, onlyNLGN4X andNLGNL1 rank highly for their network scores. Notably the inter-correlations
amongst neuroligin and neurexin gene expression are not large indaesAdditional file 16: Table
S7), suggesting they have different roles in the development of the tabFFEC-MSC.

We believe it is impossible to identify all risk genes in one analysis, regardi¢iss methods employed.
To enhance power, one could parse the literature for evidence ofeésgmpact on risk and somehow
include that evidence in the DAWN analysis. The downside to that appiedbht it will be difficult

and somewhat subjective to score the evidence from studies that htaremtifexperimental designs



and results. Specifically, the way the data are collected could affecttieatss of risk parameters for
specific genes; for example, syndromic genes, which affect multiplersgsteuld be over-represented
in the literature, potentially exaggerating their importance for ASD risk.

Extensions to DAWN

Onthe other hand, there is unbiased information that is not yet built into tbetalg, such as chromatin
modification, other features of gene regulation and other sources ofmafmn regarding association
with disease. We are working on extensions of DAWN to accommodate thede ddrdata. There is

also potentially biased but valuable information that should be evaluated fdelmg. For example,

we noted that a significant number of risk genes are involved in the regulattioeurite extension or
arborization. While it would be challenging, this kind of information would ideb#yincorporated into

an algorithm such as DAWN.

An additional concern for any meta-analytic approach like DAWN is datditgudoth from gene

expression and genome sequencing. Poor quality assessment of xy@essi®n obscures the
construction of gene networks. In addition, unless whole-exome or wjesleme sequencing
becomes very cost effective and highly representative of genomiemiphere will always be genes
with poor coverage from methods that target the entire exome or genomehavéeassumed the
missing information is random, with respect to risk for ASD, but it still redubesability to predict

risk genes. Interestingly alternative methods that capture those missing @auld benefit from

analyses such as DAWN. The results from DAWN, specifically the nASiegeand their network
scores, when combined with information about coverage of the seqgesxqgireriments, provides key
information about which genes should be targeted with alternative saqgemethods (e.g., [17])

because they are closely integrated with genes that affect risk.

In the very near future, studies will refine the data relevant to geneession and to the genetics of
ASD. The genetic data are expected to change dramatically during theemexefirs [1]. Thus, we
expect the rASD gene set and its associated subnetworks to be rdfiteck@anded with these new
data. To speed the gene discovery process, candidate gene validatims €an be applied to large
samples of trios using the results from DAWN to guide in gene selection.

Synopsis of results

Using the DAWN algorithm to integrate gene co-expression and genetic \@atiégentified over a
hundred genes with compelling evidence they affect risk for ASD (Tahle Qur analyses also
identified subnetworks of genes likely to be involved in risk for ASD, andtli@ majority of genes
included there is no strong evidence for risk from genetic results alagarés 2 and 4). Our analyses
build directly on the results from [14] because we target the mid-fetal MISC; where a striking and
highly significant co-expression of genes is implicated in ASD risk on this ledigle novo mutations.

It is reasonable to predict that such strong prior information is esseotitiid success of methods such
as DAWN. Similarly, refined co-expression networks obtained from tasgeples and from RNAseq
experiments should improve the performance of DAWN, while expressitafdan additional brain
regions could yield additional findings [14].

The results from DAWN also clarify the neurobiology of ASD. A promineradty for its etiology
proposes it is caused by aberrant connectivity of neuronal circuiéstd intrinsically abnormal
synapses [73,74]. Indeed, the sheer number of ASD genes playiegralke in synaptic development
or function strongly support this theory. In this regard, the subnetsvarkundPTEN (Figure 5A),
SPAST (Figure 5C) andNAV2 (Additional file 5: Table S4) are quite intriguing. Portions of these
networks play key roles in neuritic outgrowth, arborization, guidance@mainal specification of both



axons and dendrites. Moreover, when we evaluate the entire list of gapécated in risk (Table 1),

we find highly significant enrichment of these genes for involvement inamepirojection development.
Recent support for enrichment also comes from a bioinformatics anabyssommon variants

potentially affecting ASD risk [75]. Proper circuits can only be achievdwenvsynapses function
properly and when they exist in the appropriate numbers, distributionsgetificities [76]. In other

words, the wiring diagram is as important to neural circuit function as tladitguof its connections.

Thus a hypothesis to explain these subnetworks is that they converge datiore of coordinated

neurite development and that risk for ASD arises from disorganizedpaidé arborization in addition

to the often-described synaptic dysfunction [77]. This hypothesis isistemt with a common feature
of subjects with ASD, namely a slightly but stochastically larger brain thanotegd78], consistent
with overgrowth and/or abnormal synaptic pruning.

Conclusions

DAWN offers a general approach to gene discovery, which can pkegito many complex disorders.
The algorithm leverages genetic and gene expression data effectiyalydict probable risk genes and
subnetworks. Validation studies demonstrate that DAWN is successfutdigting the genes that will
accumulate new dnLoF mutations better than any existing methods, undegsitmrihigh likelihood
that DAWN is finding true risk genes for ASD. The set of risk genes mteyohere provides further
support for the theory that neurite extension and neuronal arborizaltky a key role in risk for ASD.
Currently DAWN's findings are limited by the power of test statistics derivedhfavailable samples
with exome sequencing. And yet this algorithm has already yielded a rictestanf potential risk
genes. Emerging ASD sequencing data, based on larger sample sizggeatly improve the quality
of genetic information going into the algorithm, which will further enhance thegoaf DAWN to
identify subnetworks of risk genes.
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Additional files

Additional_file_1 as XLSX
Additional file 1: Table S1. Summary of all available gene expression samples from [16].

Additional_file_2 as PDF

Additional file 2: Figure S1. Network analysis of gene expression in the frontal cortex (PFC-MSC)
and distribution of risk ASD (rASD) genes within modules for periods 3-& 4+6. (A) Dendrogram
produced by hierarchical clustering of gene co-expression in peded using WGCNA. Modules of
co-expressed genes are delineated by color. In the second depidtied@ndrogram, rASD genes are
highlighted with a color according to module membership; other genes aredatogray. Counts are



number of rASD genes per module. Most rASD genes fall in tight clustghsnimodules, and yet they
fall in many distinct modulegB) As above, but for periods 3-5.

Additional_file_3 as DOCX

Additional file 3: Table S2. Sets of overlapping gene modules formulated using four criteria:
correlation at developmental periods 3-5 and 4—6, both with modules @nesiteg powers 1 and 6 to
define the adjacency matrix in WGCNA. By varying the definition of adjacestightly we capture
more of the features of the gene clusters. *Median (1st, 3rd quantile).

Additional_file_4 as DOCX

Additional file 4: Table S3. Number of modules in periods 3-5 and periods 4-6 analysis. ldeally
modules successfully split the genes into clustered subsets with stroetptiorrs within a module and
weak correlations across modules. Not surprisingly this is an imperfeceps and modules create some
artificial boundaries that separate genes with fairly strong levels oéledion. One method for module
construction involves choosing a power that produces a scale-frel@gyp however, this choice yielded
a large number of small modules that was unsuitable for the planned ansiifesehose powers 1 and 6
to span a range of plausible modules. Power 6 yielded smaller and more msmaodules than power
1 for both time periods; moreover, many of the power 6 modules were quite anthhot suitable for
the planned network analysis (Additional file 2: Figure S1). For powendy of these small modules
could be successfully merged together based on the eigengenes.trisstgmower 1 produced larger
modules and merging via eigengenes led to one very large module that wastalsatable for the
network analysis (Additional file 2: Figure S1). To obtain a reasonabileatmn of mid-sized modules
we use the unmerged modules for power 1 and the merged modules for @oNetably, this choice
produced a similar number of modules for each choice of power and maiwesdé modules were of
similar size.

Additional_file_5 as XLSX

Additional file 5: Table S4. Statistics for all genes analyzed in periods 3-5 and 4—-6. The summary
tab is a summary of results over all four modular representations (powasrd & for periods 3-5 and
4-6). For the rASD and nASD columns, a gene was labeled ‘yes’ if it wastiied in any of the four
module sets. min_FDR (network score) is the minimum (maximum) value over alifodule sets. In

the annotation column, 0, 1 or 2 represents a gene with 0, 1, or at leasitBigdednLoF mutations,
respectively. Tabs period4—6 and period3-5 provide similar informatioedch separate time period.
The rASD_p4-6 and rASD_p3-5 tabs provide validation scores foExg&nes identified in the analysis

of periods 4—6 and 3-5, respectively. The rASD_correlation tatsdive set of neighboring genes for

all rASD genes (i.e., rASD genes with| > .7).

Additional_file_6 as PDF

Additional file 6: Figure S2. Identifying ASD genes and subnetworks by a network analysis of gene
expression and association statistics. (A) Gene co-expression netaike from pairwise correlations

of gene expression. After sorting genes into modules by using WGCN#e genes cluster into highly
connected units, called supernodes, which are identified by cutting trerdtieral tree at .75. (B)
Each node is represented by a Z-score derived from the TADalue. Supernodes are represented
by the score associated with the minimumvalue of all genes in the node. An adjacency matrix
connects nodes with absolute correlation greater thafC) A hidden Markov random field model is
used to model correlation of th&-scores across the gene network. (D) The modeling process yields
subnetworks with evidence for involvement in risk for ASD, and the engteo$ genes involved in
associated subnetworks are called network ASD genes (nASD). Onftheeté balls indicate nodes
with relatively largeZ-scores, prior to network analysis. On the right, red balls delineate rnihdes
are identified as nASD genes based on clustering of signal. Unconnemded tend to turn blue and
tightly connected nodes turn red. The top module displays a tightly clustenmea;siige bottom one is



unclustered, and no nASD genes are identified. (E) A small module illusttetas. (F) To identify
genes likely to affect risk for ASD (rASD), all nASD genes are examifigther based on theiZ-
scores. (G) For large supernodes, risk genes are determineddrasiedtering of signal in th&-score
within a supernode; for small supernodes and singleton nodes the dielmsadetermined purely by
Z-score.

Additional_file_7 as PDF
Additional file 7: Text S1. Detailed description of the DAWN algorithm.

Additional_file_8 as PDF

Additional file 8: Figure S3. Distribution of network scores across genes from the frontal co(fex.
Box plots of network scores for genes divided into three categories:nA&SD genes, nASD genes
(excluding rASD genes) and rASD genes. Results are displayed fmdped—6 (yellow) and 3-5
(orange).(B) Correlation of network scores by time period for the set of nASD geneddu both time
periods. The red dashed line is the diagonal {jne z.

Additional_file_9 as PDF
Additional file 9: Figure S4. Distribution of Z-scores based on TADA& values for all nASD genes.
Genes that are also rASD genes are colored in red, and the remaiedet@ed dark cyan.

Additional_file_10 as PDF

Additional file 10: Figure S5. Discovery rate of genes witbe novo LoF mutations as the signal
becomes more diluted. Two dilution experiments were perfornjdilweakening theP value signal
and (B) weakening the correlation structure. The numbed®ihovo genes identified#dnLoF) is
plotted in blue, as a function of the dilution of the signal, ranging from Q0@Y%, and the HMRF
parameter, which measures the strength of clustering of signal in the networks, isgloterange.
The standard error of the estimates is indicated with error bars.

Additional_file_11 as DOCX
Additional file 11: Table S5. Summary ofde novo variants identified for 44 selected genes for the
MIPS experiment.

Additional_file_12 as JPEG
Additional file 12: Figure S6. PPI network of all rASD genes. The edge information was obtained
using DAPPLE [79].

Additional_file_13 as PDF

Additional file 13: Figure S7. Enrichment analysis using genes from the clusters shown in Figure 4
with the ChEA, Wikipathways, GO_biological Process, MGI_Mouse Ptygrgoand Human Gene Atlas
gene-set libraries.

Additional_file_14 as JPEG

Additional file 14: Figure S8. Subnetwork of rASD genes fMRK1. This gene has the highest network
score among all nASD genes, but this gene, which has no signal afiaisso in its TADA score, was
not identified as an rASD gene.

Additional_file_15 as XLSX
Additional file 15: Table S6. The list of GO-identified rASD genes.

Additional_file_16 as DOCX
Additional file 16: Table S7. Correlations amongst neurexin and neuroligin genes for periods 4% (to
and 3-5 (bottom).
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