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Abstract

Background

De novo loss-of-function (dnLoF) mutations are found twofold more often in autism spectrum disorder
(ASD) probands than their unaffected siblings. Multiple independent dnLoF mutations in the same
gene implicate the gene in risk and hence provide a systematic, albeit arduous, path forward for ASD
genetics. It is likely that using additional non-genetic data will enhance the ability to identify ASD
genes.

Methods

To accelerate the search for ASD genes, we developed a novel algorithm, DAWN, to model two kinds
of data: rare variations from exome sequencing and gene co-expression in the mid-fetal prefrontal and
motor-somatosensory neocortex, a critical nexus for risk. The algorithmcasts the ensemble data as a
hidden Markov random field in which the graph structure is determined by gene co-expression and it
combines these interrelationships with node-specific observations, namely gene identity, expression,
genetic data and the estimated effect on risk.

Results

Using currently available genetic data and a specific developmental time periodfor gene co-
expression, DAWN identified 127 genes that plausibly affect risk, and aset of likely ASD
subnetworks. Validation experiments making use of published targeted resequencing results
demonstrate its efficacy in reliably predicting ASD genes. DAWN also successfully predicts known
ASD genes, not included in the genetic data used to create the model.

Conclusions

Validation studies demonstrate that DAWN is effective in predicting ASD genesand subnetworks by
leveraging genetic and gene expression data. The findings reported here implicate neurite extension
and neuronal arborization as risks for ASD. Using DAWN on emerging ASD sequence data and gene
expression data from other brain regions and tissues would likely identify novel ASD genes. DAWN
can also be used for other complex disorders to identify genes and subnetworks in those disorders.

Keywords

Autism, Risk prediction, Gene discovery, Weighted gene co-expression network analysis, Network,
Hidden Markov random field, Neurite extension, Neuronal arborization

Background

That genetic variation affects the risk for autism spectrum disorders (ASDs) has been known for decades,
yet only recently has the complexity of its architecture come into focus [1]. During the past few years
a series of studies has been published, some analyzing copy number variants [2,3], others rare sequence
variants [4-9], and still others common variants [10,11], whose data can only be explained if many genes
are involved in the risk for ASD. Our recent work estimates this number to be about 1,000 [1,9,12], a
remarkably high fraction of the known genes in the genome. To date, analysis of 1,043 ASD trios has
identified a handful of the genes involved in the ASD risk. Extrapolating from these data would require
exome analysis of tens of thousands of families to identify even half of the riskgenes, an infeasible



short-term goal with regard to sample collection and funding. Therefore there is an urgent need to
advance ASD gene discovery through the integration of complementary biologically relevant datasets.

The complexity of the ASD genetic architecture raises challenges, but we anticipate there will be a
discoverable organization to these genes that will pave the way for deep insights into genetics and
neurobiology. Support for this conjecture comes from recent analyses [13-15]. A recent paper [14]
has laid the foundation for these insights in two ways: by identifying brain gene expression networks
as meaningful for organization and interrelationships of ASD genes; andby identifying the region and
developmental periods in which these genes tend to coalesce to confer riskof ASD, specifically the
mid-fetal prefrontal and motor-somatosensory neocortex (PFC-MSC).We reasoned that if this region
were a critical nexus for the expression of ASD genes, it would be the perfect place to hunt for novel
ASD genes. Thus we take the results from [14] further by integrating two key data sets, BrainSpan
gene expression [16] and results from analysis of rare sequence variation [12], to identify genes and
subnetworks in the mid-fetal PFC-MSC that likely underlie ASD risk.

To implicate genes in risk (predicted risk or rASD genes) we have developed an algorithm named DAWN
(for Detecting Association With Networks, Figure 1). Building on the logic thatASD genes cluster
within a co-expression network [14,15], the algorithm identifies ‘hot spots’ within this co-expression
network at which multiple genes with evidence of ASD association from the exome data cluster together.
For these hot spots DAWN uses the evidence from neighboring genes to reinforce the ASD signal, while
in ‘cooler’ regions the absence of neighboring genes with evidence of ASD association downgrades
the signal. By modeling these data, DAWN identified 127 rASD genes (Table 1), many of which are
novel. By analyzing independently generated association data [17] for asubset of these rASD genes we
validated DAWN by demonstrating its ability to delineate which genes will yield newde novo mutations
and which will not. Importantly these results provide a framework for targeted resequencing of new
samples to demonstrate involvement in ASD risk definitively and for neurobiological assessment of
gene and subnetwork function. Moreover, this approach could be applied to other gene expression data
in relevant tissues to identify additional subnetworks of ASD risk genes.

Figure 1 The DAWN algorithm. (A) Each node in the network represents a gene and each edge
represents pairs of genes with strong co-expression (absolute correlation r > 0.7). (B) Orange nodes
indicate genes with strong genetic scores from the TADA test.(C) Hot spots (i.e., clusters of strong
scores) are classified as nASD genes in the screening stage of the algorithm; cool spots (i.e. strong
scores in isolation) are not.(D) In the final cleaning step, the nASD list is further refined to reveal
the rASD gene list. This step uses the TADA scores and features of the network to compute the false
discovery rate of each gene. FDR, false discovery rate; nASD, network autism spectrum disorder; rASD,
risk autism spectrum disorder; TADA, transmission andde novo association.



Table 1 List of genes predicted to affect risk for ASD (rASD genes)
Range of FDRq-values∗

Number of dnLoF mutations 0-0.0025 0.0025-0.025 0.025-0.05

> 1
CUL3, DYRK1A,d GRIN2B,a,d

POGZ, SCN2A,a TBR1a,d

1

ADNP,d CBX4, CDC42BPB, ARID1B,d ATP1B1, BCL11A, RIMS1e

COL25A1, DIP2C, DDX3X, CSTF2T, FOXP1,b ITGA5,
LMTK3, MED13L, NFIA, L1CAM,c NCKAP1, MBD5,a

RAB2A, PHF2, RNF38, PCOLCE, SCP2, SHANK2,a

PPM1D, PRPF39, SETBP1, SPAST, SMARCC2, TCF3,
TROVE2, UBR3, ZMYM2 UNC80, VCP

0

BANK1, C1orf95, ELOVL1, AGK, ARSK, ATRN, BBS10,b ACTL6A, ANKS1B, ASB8,
FCAR, LMCD1, SMC3, BEND7, C2CD3, CD34, BAHCC1, C1orf43,
PRIM2, PTEN,c,d SERINC5, CHMP2B, CLDN11, CNOT1, CASD1, CDC42EP4, DUSP14,
SMAP1, TNC, CRY1, DCAF11, DHX29, HCFC2, HIST1H3D, LYSMD3,
ZNF175, ZNF33A DYNC1I2, EIF3G, F3, FBXL5, MARK4, NAV2, PAMR1,

GDPD4, GMNN, HIST1H4B, PCNX, PSMG2, RSU1,
KIAA1468, ITGB3BP, MAPK4, SMPD3, SPRY1, TNPO3,
MCM5, MAPT, MARCO, VASH1, ZNF410
METTL14, MRPS26, MRPL44,
MUDENG, NCOR1, NDUFB5,
NIF3L1, NR2F1, OR2AK2,
PCIF1, PDLIM1, RAD21,
RAD51AP1, RBBP9, REXO1,
RNF168, SCD, SLC22A15,
SMG7, SPAG17, STXBP1,c

TBL1XR1,d TSR1, ZFAND2A
∗ASD genes are displayed by range of False Discovery Rate (FDR) q-value; the 3 columns correspond to genes significant witha genome-wide correction at levels .0025, .025,
and .05, respectively. Genes with FDR < .05, but validation score less than .90 were not included.agene with strong prior support for affecting risk for ASD ;bgene with modest
prior support for affecting risk for ASD;csyndromic gene;dgene with ade novo loss-of-function mutation in the [17] study;eRIMS1 has onede novo loss-of-function mutation,
netscore = 107 (95th percentile), and FDR of .077 exceeding the cutoff.



Methods

Gene expression and co-expression

The data analyzed were produced as previously described [16] and based on the same quality control
and quantile normalization. After total RNA was extracted from tissue samples,gene expression was
assessed using the Affymetrix GeneChip Human Exon 1.0 ST Array platform(Platform GPL5175),
yielding high-quality comprehensive data. The data were downloaded from the National Center for
Biotechnology Information Gene Expression Omnibus (GEO accession number [GEO:GSE25219]).
Expression data from the core probe set were used in co-expressionanalysis of most genes. For genes
CHD8, FLG, FREM3, FRG2C, LMTK3, THSD7A, UBN2 andZNF594, however, data from the extended
probe set were utilized. We utilized measurements from PFC-MSC, analyzing14,651 unique transcripts
[16]. To investigate mid-fetal development we targeted post-conception weeks 10–24, which covers time
periods 3–6 as defined previously [16]. In our analysis, we used two overlapping windows: periods 3–5
(post-conception weeks 10–19) and 4–6 (post-conception weeks 13–24) with 10 and 14 brains available,
respectively.

Gene co-expression was measured by the Pearson correlationr between pairs of genes. To obtain the
co-expression between a pair of genesX andY , multiple observations of the joint expression ofX

andY are essential. These replicates were obtained in two ways, by measurementsof X andY from
different regions of the same portion of the brain, and from the same region in different brains. For
periods 3–5 and 4–6 there were 107 and 140 replicates of expression per gene, respectively (Additional
file 1: Table S1).

Gene networks

Gene networks were inferred from the pairwise correlation matrices usingthe software package
Weighted Gene Co-expression Network Analysis (WGCNA) [18,19]. A similarity matrix was
calculated from the absolute correlation of gene expression (r) raised to a power. For each pair of
genes, a topological overlap measure was calculated based on the adjacency matrix. From the implied
dissimilarity between genes, average linkage hierarchical clustering was used to construct the
dendrogram. Modules were chosen using dynamic cutting of the branchesof the resulting clustering
tree. We set the minimum module size to 30 genes and the minimum height for merging modules at
0.15. Closely related modules can be merged using the adjacency of eigengenes (i.e., the first
eigenvectors of the expression matrix for a module). To capture salient features of the gene
co-expression network fully, modules were built independently for eachtime span (3–5 and 4–6), and
within each period of development modules were chosen using two different choices of the power
parameter (1 and 6); see Additional file 2: Figure S1, Additional file 3: Table S2 and Additional file 4:
Table S3 for details. The first step of the DAWN algorithm (Figure 1) involves evaluating these four
representations of the gene expression data. Multiple representations are necessary because a single
partition of genes into highly co-expressed modules fails to capture the full neighborhood of all genes;
using multiple sets of modules avoids missing signals from risk genes that are onthe boundary between
two modules. The goal here is for every gene to have its nearest neighbors included in a common
module for at least one partition of the genes.

Within each module we clustered highly correlated genes to create multi-gene nodes. For these analyses
the tree was cut at height|r| = 0.75 to yield the genes in a multi-gene node. Once the complete
set of nodes was defined (both single-gene and multi-gene), a network was constructed by connecting
nodes that are correlated at the next level of strength (|r| > 0.7). We chose a threshold ofr = 0.7 for
the network because it is a widely used threshold in the literature and it provided the desired network
density. Specifically, we found thatr = 0.6 produced a very dense network andr = 0.8 a very sparse



network, each unsuitable for the proposed analysis. Our motivation for pre-clustering highly correlated
genes as multi-gene nodes was to create a sparse network that was not dominated by local subsets of
highly connected genes. By grouping these subsets of genes into multi-gene nodes, the broader pattern
of network connections becomes more apparent. Naturally to work within the algorithm as a whole, the
threshold for multi-gene clusters must be greater than 0.7. Forr = 0.8 only a small number of genes
would be clustered, however, and therefore .75 was chosen as a compromise between these extremes.

Genetic data from whole-exome sequencing studies

Transmission andde novo association (TADA) scores [12] (Additional file 5: Table S4) were calculated
from the following data: all reportedde novo mutations from 932 ASD families consisting of trios of
affected offspring and two parents from four studies [4,6,8,9]; transmitted rare variants from 641 of these
families from two studies [4,9]; and case-control data from the ARRA AutismSequencing Consortium,
consisting of 935 ASD subjects and 870 controls [20]. In addition we included twode novo loss-of-
function (dnLoF) mutations obtained from a set of 44 trios [5] and 56 trios [14]. For a complete list of
de novo variants utilized, see [14]. Each missense mutation was classified into a category of damage to
the protein based on its predicted effect on the coding sequence using PolyPhen2 [21]. Loss-of-function
(LoF) and ‘probably damaging’ missense variants were analyzed by TADA, both of which showed
enrichment in probands for these data. In addition to finding strong statistical support for a few novel
ASD risk genes [12], TADA found significant enrichment of genes with small P values compared with
random expectation, indicating there are more genes affecting risk for ASD yet to be discovered, even
from these genetic data.

The TADAP values were converted toZ-scores using the standard normal probability integral:

Z = Φ−1(1− P )

whereΦ is the cumulative distribution function of standard normal distribution. Provided a gene is
not associated with ASD, it follows without further assumption that theZ-score is standard normally
distributed. When a gene is a risk gene, theZ-score approximately follows a normal distribution with
meanµ > 0. A Z-score is associated with each node. For multi-gene nodes this is the minimumP

value of all genes in the node.

The DAWN algorithm

From a statistical perspective, DAWN is based on the ‘screen and clean’principle [22]: first screen the
data to find all potential signals (network ASD or nASD genes), and then using more stringent criteria,
clean the list so that it includes only those signals that meet more traditional criteria for significance
(rASD genes). This basic strategy has been shown to increase power and yet control error rates in a
similar high-dimensional setting [22].

Screening stage

DAWN relies on a hidden Markov random field (HMRF) to identify clusters ofpossible risk genes
embedded in the entire expression network (Figure 1, Additional file 6: Figure S2 and Additional file 7:
Text S1). The true state of each node (rASD risk or not) is hidden, but the TADA score associated with
gene node can be observed. Clusters of nodes with high TADA scores suggests that these nodes are
likely associated with risk. The HMRF network algorithm works as follows: (1) genes are organized
into highly correlated modules based on gene expression using WGCNA, (2) the adjacency matrix
defines a network including edges between genes with absolute correlationexceeding a fixed threshold,
(3) this model examines the initial signals provided by the nodeZ-scores to determine if high scores



tend to be clustered in the network and (4) the fitted model then infers the missinglabel for a node,
namely whether it is related to ASD risk or not. This label is determined based ontheZ-score of the
node and whether or not the node has many neighbors with largeZ-scores. By using a number of
computational approximations, including the iterative conditional mode, the model parameters can be
estimated efficiently. Consequently we can estimate the probability a node is associated with ASD risk.
For related literature, see [23,24]. We use a posterior probability of 0.5 to identify nodes potentially
associated with risk and call the genes in these nodes network ASD (nASD)genes.

As described earlier, tightly clustered genes are collapsed into multi-gene nodes. The adjacency matrix
entries for these nodes are defined based on the average linkage between nodes. Each multi-gene node
is assigned a node score defined by the minimumP value of all genes within the cluster. Finally, the
HMRF analysis follows as for single gene nodes. In this way, the HMRF algorithm can be applied to a
much smaller set of nodes with an adjacency matrix that is far less densely connected. Based on results
from simulations and data analysis, it appears that the HMRF approach is more powerful at detecting
clusters of risk nodes when multi-gene nodes are incorporated into the algorithm.

Cleaning stage

After running the HMRF model, the goal at this step is to winnow the nASD list down to a smaller set of
genes that are highly likely to affect risk on the basis of the genetic evidence using a false discovery rate
(FDR) procedure [25]. We call these probable risk (rASD) genes. To maximize power to discover rASD
genes in subnetworks dense for genes affecting risk, we use a stratified analysis. Each large multi-gene
node defines a stratum (more than ten genes), and we fit a Gaussian mixturemodel to the distribution
of TADA Z-scores to estimate the fraction of risk genes present in the multi-gene node [26]. The larger
this fraction is estimated to be, the larger the number of genes determined to be rASD genes. Thus
this FDR procedure garners power by exploiting the heterogeneity inherent across multi-gene nodes and
modules, while still controlling the error rate. Then, for all remaining nASD genes, which includes
small multi-gene nodes, the distribution of TADA test statistics is evaluated by fittingthe mixture model
to the entire set of statistics (Additional file 8: Figure S3). The model is described in detail in Additional
file 7: Text S1.

The DAWN analysis is performed for power 1 and power 6 modules and forperiods 3–5 and 4–6 PFC-
MSC. Thus there are four representations of the gene expression network. To select a unique set of
rASD genes we use the minimum FDR across four representations.

Permutation experiments

To evaluate DAWN we performed two permutation experiments. Each sought toilluminate DAWN’s
performance by diluting the signal for association in two ways: (I) by separating smallP values from
risk genes and (II) by moving risk genes from clusters of genes with smallP values. All of the
permutation experiments were performed at the node level. Hence single gene nodes and multi-gene
nodes were treated interchangeably in what follows.

Experiment I: diluting signals

1. Randomly select a proportionl of nodes that haveP values less than or equal to 0.1. The
proportionl is set to be equal to 0.2, 0.4, 0.6, 0.8 or 1.

2. Randomly select the same number of nodes that haveP values greater than 0.1. Permute theP

values of selected nodes with the nodes selected in step 1.



3. Run the HMRF approach with the permuted data and estimate the parameters ofthe model.
Record the number of genes identified that have at least one dnLoF variant.

4. Repeat steps 1–3 20 times for eachl.

Experiment II: diluting the clustering of signals in the network

Replace Step 2 above with the following:

2. Randomly select the same number of nodes that haveP values greater than 0.1. Permute the
selected nodes (i.e., switch both theP value and the gene labels associated with the pair of nodes).
With increasing dilution, this effectively removes the correlated nature of thesignal.

Network score

To summarize genei’s position within the network, a network score was calculated as:

Si =
∑

j 6=i

|rij | × zj

in which both variables are given hard thresholds (0 if correlation|rij | < 0.7 or if Z-scorezj < 1.2).
TheZ-score is obtained from the TADAP value.

Connectivity

To evaluate the connectivity of the rASD gene list we performed a permutationtest. All genes
expressed in the brain that fell within a module and had exome data were identified: 10,223 genes
matched these criteria including all 127 rASD genes. The genes were sorted by mutability (based on
size and GC content). Random lists of 127 genes were sampled repeatedly,with the constraint that they
be approximately equal in mutability to the original list. We compared the mean connectivity of each
list of 127 to the true rASD list to obtain aP value for connectivity.

De novo probability model

We estimated the probability that a true ASD gene has at least one dnLoF mutationin a sample of
2,500 trios by extrapolating from available trios. In a sample of 1,043 trios, 143 de novo LoF mutations
were observed, involving 130 unique genes, with 9 genes incurring multipleevents and 121 incurring
single events [14]. Extrapolating this process to 2,500 trios we expect about 342 de novo LoF
mutations, involving about 311 unique genes, with about 13 genes incurring multiple events and 298
incurring single events. Based on previous analysis, we anticipate about50% of the single-mutation
genes and most of the multi-mutation genes are true ASD genes [14]. Consequently, we predict
approximately 162 (or slightly fewer) true ASD genes will have at least onede novo LoF mutation in a
sample involving 2,500 trios. Assuming there at least 1,000 true ASD genes [12], each ASD gene,a
priori, has approximately a 15–16% chance of having a dnLoF mutation in a sample of 2,500 trios.

Protein-protein interactions

A literature-based protein-protein interaction (PPI) network was constructed by combining interactions
from the following databases: BioGRID [27], HPRD [28], MINT [29], IntAct [30], KEA [31],
KEGG [32], SNAVI [33] and MIPS [34]. Only interactions from publications that reported ten or fewer



interactions were retained. After combining the binary interactions from these databases by converting
gene IDs to EntreZ Gene Symbols the biggest connected component was used for further analysis.
rASD genes were seeded in this network and Dijkstra’s shortest path algorithm [35] was used to extract
a subnetwork that connected the seed genes using a path length of three (one intermediate and two
links) [36]. The natural clustering of the obtained subnetwork was created using the organic layout of
the graphic software yEd [37]. The relative local clusters were manuallyidentified.

Functional enrichment analysis with Enrichr

Seed rASD genes from the identified clusters of the PPI network, togetherwith the intermediates from
each cluster, were fed into the online gene enrichment analysis tool Enrichr [38]. Enrichr has 36 gene
set libraries and performs gene set enrichment analyses using Fisher’s exact test (FET) with Benjamini
Hochberg corrections [25]. We focused our enrichment analysis on functional annotation from gene
set libraries created from the gene ontology (GO) [39] biological process (BP) tree, the gene ontology
molecular function (MF) tree and the mouse genome information (MGI) molecularphenotype (MP)
browser ontology tree [40]. Enrichr [38] and its accompanying databases are online [41].

Results and discussion

Discovering network and risk genes using DAWN

To search for clusters of possible risk genes embedded in the entire expression network, DAWN
models the interrelationships amongst nodes of a network, in terms of risk status, and combines such
interrelationships with node-specific genetic signals for association (Figure 1). As part of this process,
DAWN assigns nodes a posterior probability of being part of an ASD subnetwork. Genes are defined as
nASD genes if their posterior probability from the hidden Markov analysis crosses the threshold of 0.5.
This results in 2,323 genes being classified as nASD genes (Additional file 5: Table S4).

To illustrate the efficacy of DAWN for this step, we computed the network score for each gene, which
quantifies the strength of the genetic signal from the neighboring genes in the network. The distribution
of these scores demonstrates that nASD genes are indeed significantly more connected to other genes
potentially affecting risk when compared to genes not in this set (Methods, Additional file 3: Table S2;
and Additional file 8: Figure S3; Wilcoxon rank test,P < 10−16).

Once genes are separated into the nASD and non-nASD groups (the screening step of the screen-and-
clean algorithm), DAWN performed a further evaluation of the genetic data withthe goal of finding the
subset of nASD genes with compelling evidence for ASD risk (cleaning step). The cleaning step has
two levels, an FDR procedure tailored to the network structure, the genetic score, and an evaluation of
sensitivity of the FDR results to network structure. After performing the FDRprocedure, 146 genes
haveq ≤ 0.05 (Additional file 5: Table S4).

To examine the robustness of these predictions to network structure, we performed a cross-validation
experiment in which we iteratively removed a fraction of the genetic signals and re-evaluated the
prediction of risk genes. For each iteration, we randomly removed the genetic signal from10% of the
rASD genes and then reran the DAWN algorithm to determine which of the remaining rASD genes
were identified as predicted risk genes by the algorithm. A ‘validation score’, specifically the fraction
of iterations for which the gene is included in the updated list, showed that most of the rASD genes are
robust to the set of genetic signals present (Additional file 5: Table S4),with 86% achieving a
validation score of90% or higher. However, for the other14% of genes originally predicted to affect
risk, the results depended on a small number of neighboring genes and were sensitive to their removal.
These genes were excluded from the final rASD list because their association was judged to be
non-robust, leaving 127 genes that were predicted to affect risk (Table 1).



The rASD genes had striking co-expression (Figure 2), significantly different from a random set of
brain-expressed genes with similar attributes (P < 0.000001; Methods). On the other hand, the network
scores for the rASD list are not significantly greater than other nASD genes (Additional file 8: Figure
S3), implying that inclusion in the rASD list requires a high network score coupled with at least a
moderate level of genetic evidence for association (Additional file 9: Figure S4).

Figure 2 Network of risk ASD (rASD) genes. These genes met the false discovery rate threshold
of .05. The intensity of the red reflects the magnitude of the netscore based on TADA statistics from
neighboring genes. Large nodes depict genes that have at least onednLoF mutation.CUL3, DYRK1A,
GRIN2B, POGZ, SCN2A andTBR1 are genes with multiple dnLoF mutations. Edges connect genes
with absolute correlation of .7 or greater based on periods 3–5 or 4–6. dnLoF, de novo loss of function;
rASD, risk autism spectrum disorder; TADA, transmission andde novo association.

Evaluating how well DAWN works

To assess DAWN’s performance we focused on the number of genes identified by the algorithm that
have at least one dnLoF mutation in sequenced probands, since the 127 rASD genes are highly
enriched for such mutations (Table 1) and over50% of such genes are independently predicted to be
ASD risk genes [9]. If DAWN were using both the network (gene expression) and association (exome)
results effectively, we would expect that diluting either of these featureswould diminish its ability to
detect these dnLoF genes. To evaluate this question we conducted two permutation experiments, either
diluting the association by separating likely risk genes from their smallP values or diluting the
network by breaking up clusters of genes with smallP values and randomly distributing them
throughout the network (Methods). The degree of dilution varied from0% to 100%.

For both dilution experiments, we found that the performance (i.e. the numberof dnLoF genes
identified) decreased in almost direct proportion to the degree of dilution (Additional file 10: Figure
S5). This result demonstrates that DAWN is sensitive to both the ASD association signal (exome) and
the location of a gene within the network (gene co-expression) in its selectionof rASD genes (Figure 1,
Additional file 6: Figure S2).

Conversely, DAWN does not require overwhelming prior evidence of association to identify rASD
genes. To test this we considered six rASD genes that have multiple dnLoF mutations leading to a very
low prior P value calculated by TADA (Table 1). By downgrading these six genes to single dnLoF
mutations, the recalculated TADAP value was increased by several orders of magnitude, as expected.
Yet, on rerunning DAWN with these higherP values, all six of these genes were still predicted to affect
risk, clearly indicating that they were pulled into the rASD gene sets based onthe strength of their
connections to neighboring genes with evidence of ASD risk.

DAWN does require genes to be connected in the adjacency matrix. Yet expression modules can create
artificial boundaries that separate some gene clusters. For this reason we used four different modular
representations of the gene expression network in DAWN. When genes are selected as rASD genes,
closer inspection reveals that they typically share a module with most (or all) oftheir top 20 nearest
neighbors for all representations. Some genes, however, appear asrASD genes for only one
representation and are often separated from several of their nearest neighbors for the other
representations. The rASD geneSHANK2 provides a good example. In periods 4–6 PFC-MSC,
SHANK2 was in a module with four other rASD genes for one representation of the network data and
was identified as an rASD gene; for the other representation, however,it was in a module with no other
connecting rASD genes and was not detected. For this reason we believeit is essential to use multiple
modular representations of the gene co-expression network.



Validation of rASD genes

Analysis of resequencing experiment

On average half of all dnLoF mutations in ASD probands correspond to true ASD genes [9], hence
one way to evaluate the rASD list is to compare it to a list of genes with dnLoF mutations identified
based on sequencing of independent ASD families. Calculations based onempiricalde novo rates and
a new set of 2,448 ASD trios show the chance of seeing a dnLoF mutation in a particular ASD gene
is about15%, although this varies depending on gene size and relative risk. Consequently, most true
ASD genes will have no dnLoF mutations, even in this relatively large study, and thus direct validation
of individual genes in the rASD list is infeasible. Nonetheless they can be evaluated as a group for
enrichment of dnLoF mutations in additional trios. Under this scenario a compelling experiment has
already been performed, namely targeted sequencing of a sample of 2,448trios with molecular inversion
probe sequencing (MIPS) of 44 carefully selected ASD candidate genes (henceforth known as the MIPS
experiment [17]). Ten of these 44 candidate genes are also on the rASDlist, thus they can be evaluated
to determine if they had an unusually high number of dnLoF mutations in the MIPS experiment.

In the MIPS experiment, eight genes incur at least one additional dnLoF event and six of these are on the
rASD list (ADNP, ARID1B, DYRK1A, PTEN, TBL1XR andTBR1), demonstrating significant enrichment
(P = 0.0007). Of the two genes incurring additional dnLoF but missing from the rASD list,CHD8 is
an obvious ASD gene [17], but its expression levels were derived from a less reliable extended probe
set, while the other analyzed genes were present on the core probe setof the BrainSpan exon array data.
CHD8’s expression is not tightly correlated with that from other genes, hence itis excluded from the
nASD gene set. The other gene,CTNNB1, is an nASD gene, but it has a TADAP value of 0.36a priori
and hence DAWN does not predict it as a risk gene. Of the four rASD genes that did not sustain dnLoF
mutations in this study, three are known ASD genes (CUL3, FOXP1 andMBD5) and one is a syndromic
gene for which ASD is sometimes a comorbid outcome (SETBP1).

In this experiment DAWN was able to distinguish the genes that will accumulate new dnLoF mutations
better than any existing methods (Figure 3, Additional file 11: Table S5). DAWN identified two rASD
genes for which no dnLoF mutations had previously been observed; in theMIPS experiment new dnLoF
mutations were identified for both of these (100% success rate) compared with the 26 genes with no
previous dnLoF mutation that were not on the rASD gene list (4% success rate, FETP = .008, odds
ratio = ∞ ). DAWN also outperformed the other methods for genes with previous dnLoF mutations:
new dnLoF mutations were identified for four out of eight rASD genes (50% success rate) compared
with one out of eight that were not on the rASD gene list (13% success rate, FETP = 0.14, odds ratio
6.16).

Figure 3 Analysis of MIPS validation experiment. (A)First 44 genes with priorde novo mutations
were sequenced for 2,448 additional trios. These genes were cross-classified by whether or not they had
a prior dnLoF mutation, and whether or not they were on the DAWN rASD list (yes: red, no: blue). For
each category, the percentage of genes that had a dnLoF mutation in the new trios is depicted.(B) For
a given gene, the probability of observing a dnLoF mutation in 2,500 probands varies. This probability
is compared for four types of genes: a randomly chosen gene and threeclassifications of the genes from
the MIPS experiment including: (i) all 44 genes, (ii) those 16 genes with a prior dnLoF mutation and
(iii) those 10 genes on the rASD list. dnLoF,de novo loss of function; rASD, risk autism spectrum
disorder.

From the results of the original experiment, we conclude that many of the 44 genes selected for the
MIPS experiment are likely ASD genes because the rate of dnLoF mutations ismore than would be
expected even if all 44 were true ASD genes. Still DAWN appears to do markedly better (Figure 3B).



We conjecture its better performance is largely due to identifying ASD genes with higher relative risk,
compared to the average ASD gene. Genes with a larger relative risk are more likely to have dnLoF
mutationsa priori [12], an expectation also supported by the MIPS experiment.

Previously identified autism spectrum disorder genes and probable risk genes

Of the rASD genes nominated (Table 1), six have been implicated for ASD riskon the basis of multiple
dnLoF events in exome sequencing studies (CUL3, DYRK1A, GRIN2B, POGZ, SCN2A and TBR1).
Seven others have been identified as ASD genes on the basis of publishedresearch [42] (three syndromic:
L1CAM, PTEN andSTXBP1; two with strong support from copy number and sequence studies:MBD5
andSHANK2; and two with equivocal evidence:BBS10 andFOXP1). This demonstrates significant
enrichment (FETP < 10−6) for nominal ASD genes in the rASD list.

Within the rASD set (Table 1) are 36 genes containing a single dnLoF mutation known from prior exome
sequencing studies [4-6,8,9,14], demonstrating significant enrichment (FET P < 10−16) compared to
the full list of 116 such genes with quality expression data for the mid-fetal PFC-MSC. Moreover three
more rASD genes were found to have a dnLoF mutation by the MIPS experiment (TBL1XR1, ARID1B
andADNP). These results are of note because of the expectation that roughly50% of these genes are
involved in risk [9] and DAWN does a better than expected job at identifying these50%.

Functional coherence

Next we reasoned that if the rASD list were meaningful, it should be enriched for biologically
meaningful, ASD-relevant processes. We focused on PPI networks,which are independent of the
co-expression networks we analyzed but have the expectation that interacting genes will have
correlated expression. In addition to forming a highly significant network of interacting genes
(Additional file 12: Figure S6), the rASD genes in the PPI network fall into several natural clusters
(Figure 4). Clusters C1, C2 and C4, accounting for a large proportion of the genes, share related
functional categories. Specifically, these three clusters are involved in transcriptional regulation (see
the GO BP and GO MF categories in Additional file 13: Figure S7). Cluster C2 isadditionally enriched
for chromatin remodeling terms in GO BP, while cluster C4 is enriched for RNA polymerase II-related
categories in GO MF. Additionally Cluster C7 relates to regulation of translation as seen in both GO
BP and GO MF. Together these results show that dysregulation of gene expression and coordinated
co-expression is a key risk factor for ASD and they further suggest dysregulation has an effect early in
development. Dysregulation of coordinated gene expression is consistent with a wide range of ASD
studies [43].

Figure 4 Clustering by enrichment and protein-protein interaction (PPI). The rASD genes are
seeded into the PPI network presented in [6], represented by red nodes, with size proportional to
the number of connections. The blue nodes are immediate intermediate proteins [36]. The network
was clustered using organic clustering methods implemented in yEd [44] rASD,risk autism spectrum
disorder.

Among other processes, clusters C3, C5 and C6 map onto neuronal migration and function, both
thought to be involved in ASD risk [45,46]. Cluster C3 is enriched for GO BPcategories involved in
cell adhesion and cell migration and for abnormalities in cell migration in MGI MP.This cluster shows
strong enrichment for the KEGG category of focal adhesion (HSA04510). Cluster C5 is enriched for
GO MF categories around ligase activity, including ubiquitin-protein ligase activity. This cluster shows
a similar enrichment in KEGG, for ubiquitin-mediated proteolysis (HSA04120), previously implicated
in neuronal function and ASD risk [47]. Cluster C6 is enriched for GO MFcategories around protein
scaffolding and receptor signaling. This cluster is also associated with several important MGI



phenotypes, including lethality and abnormalities in neuronal morphology, synaptic transmission and
plasticity, and learning and memory.

Subnetworks

The set of nASD genes, and especially the rASD genes, define subnetworks of co-expression, which
can be used to focus further neurobiological research (Additional file5: Table S4). We highlight four
subnetworks for illustration: one centered onPTEN (Figure 5A), which is a syndromic gene in which
mutations are known to increase ASD risk; one centered onFOXP1 (Figure 5B), encoding forkhead
box P1, for which there is somea priori evidence for involvement in ASD risk [48]; one centered on
SPAST (Figure 5C), encoding spastin, which has no known involvement in ASD risk; and one centered
on VRK1, encoding vaccinia related kinase 1, an nASD gene that has a very high network score and
which did not pass the threshold for the rASD list (Additional file 14: FigureS8).

Figure 5 Gene subnetworks for thePTEN, FOXP1and SPASTgenes. Figure shows all rASD genes
with absolute correlation of .7 or better with(A) PTEN, (B) FOXP1 and (C) SPAST. Intensity of red
color reflects the magnitude of theZ-score from the TADA statistic. Large nodes with labels depict
genes that have at least one dnLoF mutation recorded in the current literature (exceptPTEN). ANK2,
CUL3, DYRK1A, SCN2A andTBR1 are genes with multiple dnLoF mutations.ANK2 is included along
with rASD genes because it has two dnLoF mutations.

Although PTEN is a known ASD gene, existing whole exome sequencing data do not yet provide
compelling evidence for its involvement in risk (uncorrected TADAP = 0.0025, insignificant after
accounting for testing genome-wide). After DAWN analysis the FDRq = 0.0007, which has been
corrected for multiple testing and therefore represents much stronger evidence. The additional evidence
for association comes from the tight co-expression ofPTEN with other genes likely involved in risk
(Figure 5A). While the complete neurobiological underpinnings of this tightly connected network are
not obvious, proteins arising from several of these genes are knownto have a common function, neurite
extension. For example the protein product ofNCKAP1 plays a role in the protein complex WAVE1, an
actin scaffold protein complex that regulates neurite outgrowth [49]. The protein product ofPTEN
likely plays a role in neurite outgrowth by negatively regulating PI3K signalingand affecting neuronal
polarization [50]. PTEN could also play a role through the ubiquitin proteasome function [51]. An E3
ubiquitin ligase, Nedd4, and PTEN play complementary roles: Nedd4 knockdown increases levels of
PTEN and decreases axon branching; the branching pattern can be recovered by loss of PTEN
expression. Cullin RING ligases also play a role in arborization, with loss of the CUL3 protein product
increasing dendritic arborization [51]. Finally,SMAP1 encodes ARFGAP1, which in part functions to
control trafficking of GABA transporter-1, a protein enriched at neurite extensions in certain
neurons [52].

FOXP1 is a transcriptional regulator when it heterodimerizes with FOXP2. Mutations inFOXP2 have
been shown to impair language development, specifically causing developmental apraxia of speech [53,
54]. Until recentlyFOXP1 was not known to affect language abilities or behavior, but recent reports
[7,55,56] suggest disruptions of the gene could cause cognitive dysfunction and ASD, sometimes with
language impairment [48]. The evidence, however, is not conclusive.On the basis of the DAWN
analyses,FOXP1 hasq = 0.0083, strong evidence it plays a role in risk, especially when considered
with other independent evidence (reviewed in [48]). Notably it is connected directly and with substantial
correlation (|r| > 0.7) to five genes with at least one dnLoF event in ASD probands (Figure 5B), of
which two are known ASD risk genes,SCN2A andANK2. What role or roles these genes play to effect
this coordinated expression is not obvious from the neurobiological literature.



Certain mutations inSPAST are known to cause hereditary spastic paraplegia. In some cases, mutations
in SPAST (also known asSPG4) can affect cognitive function and result in developmental delay
syndromes [57], as well as incompletely penetrant hereditary spastic paraplegia later in life. Its
subnetwork is notable (Figure 5C):SPAST is directly connected with 12 genes having at least one
dnLoF mutation and three of those genes are known ASD risk genes. The protein product, Spast, severs
microtubules and disruption of this function appears to generate a risk for hereditary spastic
paraplegia [58]. It also interacts with protrudin to induce axonal neurite outgrowth [59]. This function,
together with its direct connections in the network to other genes involved in neurite extension
(NCKAP1 and CUL3), suggest at least a portion of this network could affect ASD risk through
improper neurite development.SPAST and its subnetwork deserve further study for their role in the risk
for ASD.

Finally, an interesting case isVRK1. Measured by the network score, it is the gene most connected to
rASD genes (Additional file 14: Figure S8). VRK1 has diverse functions, arguably most fundamental
is regulation of cell cycle. Moreover mutations inVRK1 have been implicated in neuronal development
and maintenance, including cognitive impairment [60]. There is essentially nogenetic evidence for its
involvement in ASD (TADAP = 0.572). Therefore, although it is an nASD gene with the highest
network score and intriguing neuronal functions, it does not make the rASD list (q = 0.81).

Functional interpretation of subnetworks

When looking at the genes comprising the two subnetworks given in Figures5A,C, it is striking how
many genes play some role in the regulation of neurite extension and arborization. Indeed two other
predicted risk genes are known to affect this process at a basic level, namely CDC42EP4 and
CDC42BPB, both interacting with CDC42 (Figure 2), which plays a key role in neurite
initiation [61,62]. These genes are not highly correlated in the PFC-MSC, so they cannot occur in the
same subnetwork, although they are known to serve the same function.CDC42 activates theWAVE1
actin scaffold complex, includingNCKAP1 (Figure 5A,C), initiating neurite outgrowth. Notably
expression ofCDC42BPB is highly correlated with expression ofNAV2, a gene known to impact
axonal outgrowth [63]. Being in a subnetwork centered onNAV2, its expression is highly correlated
with a substantial set of genes (Additional file 5: Table S4), many of which have some role in neurite
extension and neuronal arborization, specificallyATRN, CDC42BPB, L1CAM, MARK4, SHANK2,
MAPT andSTXBP1 [64-68], although many play other roles in cellular maturation and function.

From this enumeration it appears as if a large fraction of predicted risk genes affect neurite extension
and neuronal arborization. On the other hand, it could be that many genes play some role in this critical
feature of neuronal development and the number identified here is no larger than we would expect by
chance. We therefore formally evaluate the conjecture that the rASD list is enriched with genes related
to neurite outgrowth. For this evaluation we turn to unbiased and independent data, specifically
functional annotation data from GO. We focus on the GO term for the ‘neuron projection development’
(GO:0031175), which is a biological process and also a synonym for ‘neuron outgrowth’. The list
annotated with this term or one of its descendants in the GO hierarchy contains737 unique genes,
including 10 out of 127 rASD genes (BCL11A, FOXP1, ITGA5, L1CAM, MAPT, PTEN, SPAST,
STXBP1, TBR1 andTNC). Compared to random sets of 127 brain-expressed genes, the rASD list is
significantly enriched (P = 0.032, based on 1,000 draws).

Next, it is reasonable to ask if the ten rASD genes GO identified as functionallyrelated to neurite
outgrowth are functionally interrelated to other rASD genes. To address this question we identify rASD
genes directly connected via the PPI network with the ten GO-identified rASD genes. Using the PPI
network provided in [69], we obtained a network of 26 rASD genes (Additional file 15: Table S6), which
is significantly enriched (Figure 6A,P = 0.002, based on 1,000 draws). Finally, when we examine the



list of rASD genes separated in the PPI network from genes annotated byneurite outgrowth by at most
one step, i.e., rASD genes that interact with a gene annotated by neurite outgrowth, the resulting list
includes 68 rASD genes (Additional file 15: Table S6) and is again significantly enriched (Figure 6B,
P = 0.001, based on 1,000 draws).

Figure 6 Predicted risk genes functionally related to neuron outgrowth. (A) Ten rASD genes are
GO-identified for neuron outgrowth and 16 additional genes rASD genesare directly connected via the
PPI network.(B) Note that 68 rASD genes are either GO-identified for neuron outgrowth orseparated
in the PPI network from genes annotated by neurite outgrowth by at most one step. PPI, protein-protein
interaction; rASD, risk autism spectrum disorder.

DAWN’s limitations

Both genetic evidence and gene expression evidence are required fora risk gene to be identified by
DAWN. In the screening stage, a gene can only make it onto the nASD list if it istightly correlated with
multiple genes with moderate genetic evidence for association. Thus a lone gene with a small TADA
P value cannot make it onto the nASD list. Next in the cleaning stage the subset of the nASD genes
that have genetic evidence for association are upgraded to the rASD list. This summary highlights two
limitations of DAWN: (i) a risk gene cannot be discovered if there is not some genetic evidence for
association and (ii) a risk gene cannot be detected if it does not appear ina network of other risk genes,
based on the gene expression network in use. Both of these conditions can fail for a number of reasons,
not all of them biologically interesting. For example, the quality of sequencingdata could be poor due
to low coverage, the power of the genetic test could be poor due to insufficient sample size or the wrong
gene expression data could be utilized, yielding an irrelevant network. Other possible limitations to
DAWN are biological. For example it is possible that risk for ASD arises fromdysfunctional neuronal
circuitry that spans distinct regions of the brain, such as from the hindbrain into deep layers of the
PFC [70]. Indeed, different genes could contribute to a single circuit and be co-expressed at the circuit
level, but not in the same tissue. If this were the case, then co-expressioninformation in a specific tissue
for these genes is irrelevant and DAWN would fail to capture this aspect of ASD risk.

For these and other reasons, DAWN cannot possibly capture the bulk ofASD genes. Indeed, as noted
in [14], it is unreasonable to predict that the mid-fetal PFC-MSC is the only nexus for ASD risk genes.
Underscoring this observation, strikingly absent from the rASD set aresome genes known to affect risk
for ASD. For instance the neurexins (NRXN1, NRXN2 andNRXN3) and neuroligins (NLGN1, NLGN3
andNLGN4X) are either known to affect risk or have been implicated in risk on the basis of rare sequence
mutations and copy number variants (reviewed in [71]). These proteins pair across the synapse to play
a critical role in its development [72]. There could be several reasons why these genes are not found in
the rASD list. They might not be captured effectively by current exome sequencing methods, in which
case the genetic data cannot produce smallP values. Indeed TADAP values for all of these genes
are unimpressive [12]. If many genes underlie risk for ASD, as recent analyses suggest, the power to
detect a ‘genetic signal’ for association is low for each particular gene without very large samples. In
addition, DAWN draws strength from the connectedness of genes on the basis of their co-expression. If
genes do not have a substantial network score, then they will not be included in the rASD list. In this
regard, onlyNLGN4X andNLGN1 rank highly for their network scores. Notably the inter-correlations
amongst neuroligin and neurexin gene expression are not large in thesedata (Additional file 16: Table
S7), suggesting they have different roles in the development of the mid-fetal PFC-MSC.

We believe it is impossible to identify all risk genes in one analysis, regardlessof the methods employed.
To enhance power, one could parse the literature for evidence of a gene’s impact on risk and somehow
include that evidence in the DAWN analysis. The downside to that approachis that it will be difficult
and somewhat subjective to score the evidence from studies that have different experimental designs



and results. Specifically, the way the data are collected could affect the estimate of risk parameters for
specific genes; for example, syndromic genes, which affect multiple systems, could be over-represented
in the literature, potentially exaggerating their importance for ASD risk.

Extensions to DAWN

On the other hand, there is unbiased information that is not yet built into the algorithm, such as chromatin
modification, other features of gene regulation and other sources of information regarding association
with disease. We are working on extensions of DAWN to accommodate these kinds of data. There is
also potentially biased but valuable information that should be evaluated for modeling. For example,
we noted that a significant number of risk genes are involved in the regulation of neurite extension or
arborization. While it would be challenging, this kind of information would ideallybe incorporated into
an algorithm such as DAWN.

An additional concern for any meta-analytic approach like DAWN is data quality, both from gene
expression and genome sequencing. Poor quality assessment of gene expression obscures the
construction of gene networks. In addition, unless whole-exome or whole-genome sequencing
becomes very cost effective and highly representative of genomic content, there will always be genes
with poor coverage from methods that target the entire exome or genome. Wehave assumed the
missing information is random, with respect to risk for ASD, but it still reducesthe ability to predict
risk genes. Interestingly alternative methods that capture those missing exons would benefit from
analyses such as DAWN. The results from DAWN, specifically the nASD genes and their network
scores, when combined with information about coverage of the sequencing experiments, provides key
information about which genes should be targeted with alternative sequencing methods (e.g., [17])
because they are closely integrated with genes that affect risk.

In the very near future, studies will refine the data relevant to gene expression and to the genetics of
ASD. The genetic data are expected to change dramatically during the next few years [1]. Thus, we
expect the rASD gene set and its associated subnetworks to be refined and expanded with these new
data. To speed the gene discovery process, candidate gene validation studies can be applied to large
samples of trios using the results from DAWN to guide in gene selection.

Synopsis of results

Using the DAWN algorithm to integrate gene co-expression and genetic data,we identified over a
hundred genes with compelling evidence they affect risk for ASD (Table 1). Our analyses also
identified subnetworks of genes likely to be involved in risk for ASD, and for the majority of genes
included there is no strong evidence for risk from genetic results alone (Figures 2 and 4). Our analyses
build directly on the results from [14] because we target the mid-fetal PFC-MSC, where a striking and
highly significant co-expression of genes is implicated in ASD risk on the basis of de novo mutations.
It is reasonable to predict that such strong prior information is essential for the success of methods such
as DAWN. Similarly, refined co-expression networks obtained from larger samples and from RNAseq
experiments should improve the performance of DAWN, while expression data from additional brain
regions could yield additional findings [14].

The results from DAWN also clarify the neurobiology of ASD. A prominent theory for its etiology
proposes it is caused by aberrant connectivity of neuronal circuits due to intrinsically abnormal
synapses [73,74]. Indeed, the sheer number of ASD genes playing a key role in synaptic development
or function strongly support this theory. In this regard, the subnetworks aroundPTEN (Figure 5A),
SPAST (Figure 5C) andNAV2 (Additional file 5: Table S4) are quite intriguing. Portions of these
networks play key roles in neuritic outgrowth, arborization, guidance andterminal specification of both



axons and dendrites. Moreover, when we evaluate the entire list of genes implicated in risk (Table 1),
we find highly significant enrichment of these genes for involvement in neuron projection development.
Recent support for enrichment also comes from a bioinformatics analysisof common variants
potentially affecting ASD risk [75]. Proper circuits can only be achieved when synapses function
properly and when they exist in the appropriate numbers, distributions andspecificities [76]. In other
words, the wiring diagram is as important to neural circuit function as the quality of its connections.
Thus a hypothesis to explain these subnetworks is that they converge on mediation of coordinated
neurite development and that risk for ASD arises from disorganized patterns of arborization in addition
to the often-described synaptic dysfunction [77]. This hypothesis is consistent with a common feature
of subjects with ASD, namely a slightly but stochastically larger brain than expected [78], consistent
with overgrowth and/or abnormal synaptic pruning.

Conclusions

DAWN offers a general approach to gene discovery, which can be applied to many complex disorders.
The algorithm leverages genetic and gene expression data effectively topredict probable risk genes and
subnetworks. Validation studies demonstrate that DAWN is successful in predicting the genes that will
accumulate new dnLoF mutations better than any existing methods, underscoring the high likelihood
that DAWN is finding true risk genes for ASD. The set of risk genes reported here provides further
support for the theory that neurite extension and neuronal arborization play a key role in risk for ASD.
Currently DAWN’s findings are limited by the power of test statistics derived from available samples
with exome sequencing. And yet this algorithm has already yielded a rich harvest of potential risk
genes. Emerging ASD sequencing data, based on larger sample sizes, willgreatly improve the quality
of genetic information going into the algorithm, which will further enhance the power of DAWN to
identify subnetworks of risk genes.
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Additional files

Additional_file_1 as XLSX
Additional file 1: Table S1. Summary of all available gene expression samples from [16].

Additional_file_2 as PDF
Additional file 2: Figure S1. Network analysis of gene expression in the frontal cortex (PFC-MSC)
and distribution of risk ASD (rASD) genes within modules for periods 3–5 and 4–6. (A) Dendrogram
produced by hierarchical clustering of gene co-expression in periods 4–6 using WGCNA. Modules of
co-expressed genes are delineated by color. In the second depiction of the dendrogram, rASD genes are
highlighted with a color according to module membership; other genes are colored in gray. Counts are



number of rASD genes per module. Most rASD genes fall in tight clusters within modules, and yet they
fall in many distinct modules.(B) As above, but for periods 3–5.

Additional_file_3 as DOCX
Additional file 3: Table S2. Sets of overlapping gene modules formulated using four criteria:
correlation at developmental periods 3–5 and 4–6, both with modules created using powers 1 and 6 to
define the adjacency matrix in WGCNA. By varying the definition of adjacencyslightly we capture
more of the features of the gene clusters. *Median (1st, 3rd quantile).

Additional_file_4 as DOCX
Additional file 4: Table S3. Number of modules in periods 3–5 and periods 4–6 analysis. Ideally
modules successfully split the genes into clustered subsets with strong correlations within a module and
weak correlations across modules. Not surprisingly this is an imperfect process and modules create some
artificial boundaries that separate genes with fairly strong levels of correlation. One method for module
construction involves choosing a power that produces a scale-free topology; however, this choice yielded
a large number of small modules that was unsuitable for the planned analysis.We chose powers 1 and 6
to span a range of plausible modules. Power 6 yielded smaller and more numerous modules than power
1 for both time periods; moreover, many of the power 6 modules were quite smalland not suitable for
the planned network analysis (Additional file 2: Figure S1). For power 6,many of these small modules
could be successfully merged together based on the eigengenes. In contrast, power 1 produced larger
modules and merging via eigengenes led to one very large module that was alsonot suitable for the
network analysis (Additional file 2: Figure S1). To obtain a reasonable collection of mid-sized modules
we use the unmerged modules for power 1 and the merged modules for power6. Notably, this choice
produced a similar number of modules for each choice of power and many ofthese modules were of
similar size.

Additional_file_5 as XLSX
Additional file 5: Table S4. Statistics for all genes analyzed in periods 3–5 and 4–6. The summary
tab is a summary of results over all four modular representations (powers 1and 6 for periods 3–5 and
4–6). For the rASD and nASD columns, a gene was labeled ‘yes’ if it was identified in any of the four
module sets. min_FDR (network score) is the minimum (maximum) value over all fourmodule sets. In
the annotation column, 0, 1 or 2 represents a gene with 0, 1, or at least 2 identified dnLoF mutations,
respectively. Tabs period4–6 and period3–5 provide similar information for each separate time period.
The rASD_p4-6 and rASD_p3-5 tabs provide validation scores for rASD genes identified in the analysis
of periods 4–6 and 3–5, respectively. The rASD_correlation tab gives the set of neighboring genes for
all rASD genes (i.e., rASD genes with|r| > .7).

Additional_file_6 as PDF
Additional file 6: Figure S2. Identifying ASD genes and subnetworks by a network analysis of gene
expression and association statistics. (A) Gene co-expression networks derive from pairwise correlations
of gene expression. After sorting genes into modules by using WGCNA, some genes cluster into highly
connected units, called supernodes, which are identified by cutting the hierarchical tree at .75. (B)
Each node is represented by a Z-score derived from the TADAP value. Supernodes are represented
by the score associated with the minimumP value of all genes in the node. An adjacency matrix
connects nodes with absolute correlation greater than.7. (C) A hidden Markov random field model is
used to model correlation of theZ-scores across the gene network. (D) The modeling process yields
subnetworks with evidence for involvement in risk for ASD, and the entire set of genes involved in
associated subnetworks are called network ASD genes (nASD). On the left, red balls indicate nodes
with relatively largeZ-scores, prior to network analysis. On the right, red balls delineate nodesthat
are identified as nASD genes based on clustering of signal. Unconnectednodes tend to turn blue and
tightly connected nodes turn red. The top module displays a tightly clustered signal; the bottom one is



unclustered, and no nASD genes are identified. (E) A small module illustratesdetails. (F) To identify
genes likely to affect risk for ASD (rASD), all nASD genes are examinedfurther based on theirZ-
scores. (G) For large supernodes, risk genes are determined basedon clustering of signal in theZ-score
within a supernode; for small supernodes and singleton nodes the delineation is determined purely by
Z-score.

Additional_file_7 as PDF
Additional file 7: Text S1. Detailed description of the DAWN algorithm.

Additional_file_8 as PDF
Additional file 8: Figure S3. Distribution of network scores across genes from the frontal cortex.(A)
Box plots of network scores for genes divided into three categories: non-nASD genes, nASD genes
(excluding rASD genes) and rASD genes. Results are displayed for periods 4–6 (yellow) and 3–5
(orange).(B) Correlation of network scores by time period for the set of nASD gene found in both time
periods. The red dashed line is the diagonal liney = x.

Additional_file_9 as PDF
Additional file 9: Figure S4. Distribution ofZ-scores based on TADAP values for all nASD genes.
Genes that are also rASD genes are colored in red, and the remainder are colored dark cyan.

Additional_file_10 as PDF
Additional file 10: Figure S5. Discovery rate of genes withde novo LoF mutations as the signal
becomes more diluted. Two dilution experiments were performed:(A) weakening theP value signal
and (B) weakening the correlation structure. The number ofde novo genes identified (#dnLoF) is
plotted in blue, as a function of the dilution of the signal, ranging from 0 to100%, and the HMRF
parameterc, which measures the strength of clustering of signal in the networks, is plotted in orange.
The standard error of the estimates is indicated with error bars.

Additional_file_11 as DOCX
Additional file 11: Table S5. Summary ofde novo variants identified for 44 selected genes for the
MIPS experiment.

Additional_file_12 as JPEG
Additional file 12: Figure S6. PPI network of all rASD genes. The edge information was obtained
using DAPPLE [79].

Additional_file_13 as PDF
Additional file 13: Figure S7. Enrichment analysis using genes from the clusters shown in Figure 4
with the ChEA, Wikipathways, GO_biological Process, MGI_Mouse Phenotype and Human Gene Atlas
gene-set libraries.

Additional_file_14 as JPEG
Additional file 14: Figure S8. Subnetwork of rASD genes forVRK1. This gene has the highest network
score among all nASD genes, but this gene, which has no signal of association in its TADA score, was
not identified as an rASD gene.

Additional_file_15 as XLSX
Additional file 15: Table S6. The list of GO-identified rASD genes.

Additional_file_16 as DOCX
Additional file 16: Table S7. Correlations amongst neurexin and neuroligin genes for periods 4–6 (top)
and 3–5 (bottom).
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