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Sexual reproduction in the ocean necessitates only the
combination of gametes, followed by absorption of nutri-
ents and oxygen from the surrounding watery medium.
As life moved from the sea to the land, reproductive
strategies required compensation for the loss of this
aquatic environment. For mammals and a few other ani-
mals, the solution to this problem was the development of
the placenta, the means by which the fetus extracts nu-
trients from its environment. As the animals that used the
placenta evolved from small rodent-like creatures with
short gestations to larger animals with prolonged gesta-
tions, the demands of the developing fetus grew.
Whereas the placenta of the fetal pig, with a gestational
period of a little less than 4 months, can extract sufficient
nutrients from the mother by simple diffusion across the
uterus to the placenta, the human fetus needs a far more
complex uteroplacental relationship.

Several evolutionary solutions to the increased de-
mands of fetuses can be observed.1 One approach was
a larger placenta. For example, the chinchilla has a neo-
natal:placental weight ratio of 30:1, whereas the human
has a 6:1 ratio. Another means to greater nutritional sup-
port for the fetus was to increase the surface area of
contact between fetal circulation in the placenta and
maternal circulation. The pig fetus has a diffuse placenta
that makes contact with the mother’s uterus by a simple
folded contact. The human placenta, on the other hand,
has a complex villous structure, similar to the sea anem-
one’s tentacles waving in the sea, that greatly increases
the contact surface area between the mother’s blood
space and the fetal circulation. Despite this increased
fetal-maternal contact, the system is still rather inefficient.
We can quantify this by considering the amount of oxy-
gen in the maternal blood that enters the human placenta
and the amount of oxygen in the fetal blood that leaves
the placenta. Maternal blood has a pO2 of around 100,

whereas the pO2 of umbilical vein blood is around 35 to
40. This represents an efficiency of only 35 to 40%.
Therefore, it also became necessary to greatly increase
the flow of maternal blood into the intervillous space
during pregnancy.2,3 Without this increased maternal
blood flow, preterm birth and fetal loss occur.4 One of two
mechanisms can increase maternal flow: increased total
body blood flow or increased blood flow to the placental
bed through the uterine spiral arteries. For the human,
evolution has selected the latter mechanism, limiting the
overall systemic effects that increased total body blood
flow would produce.

The Nonpregnant State

In the nonpregnant state the uterine vessels carry ,1% of
the maternal cardiac output.5 This is not surprising in light
of the fact that a nonpregnant women needs to maintain
a uterus that weighs only 50 g. At term, these same
vessels must support a uterus, placenta, and fetus that
can weigh up to 5000 g. How can these vessels meet
such a hemodynamic challenge? Doubling the number of
vessels in the uterus, for example, would have only dou-
bled the total amount of flow into the placenta. An under-
standing of fluid mechanics gives us insight into how
such a significant increase in total blood flow can be
achieved without increasing the total number of vessels
in the uterus.

Poiseuille’s law of fluid flow in a cylinder states that flow
is proportional to the radius to the fourth power.6 Apply-
ing this law to the situation in the uterus, doubling the
radius of a uterine vessel will increase the flow through
that vessel 16 times. Comparison of vessels in the non-
pregnant uterus to those at term reveals that these ves-
sels can increase their radii by as much as tenfold. Ac-
cording to Poiseuille’s law, this results in an increase in
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blood flow by a factor of 10,000! Clearly, the ability of
uterine vessels to vary in diameter is a great advantage.
The evolutionary problem then became how to convert
small-caliber vessels in the nonpregnant state to large-
caliber vessels during pregnancy, and then return them
to their nonpregnant state and size when the pregnancy
is completed. The answer lies in the relationship between
the endometrium, uterine vessels, and invasive tropho-
blasts.

Invasive Trophoblasts, Decidualization, and
Menstruation

Invasive trophoblasts are the key to the modulation of the
state of the uterine vessels.7 These unique cells leave the
placenta, penetrate the endometrium and upper layers of
the myometrium, selectively permeate the uterine spiral
arteries, and modify these vessels to yield widened, low-
resistance vascular channels that carry the markedly in-
creased maternal blood flow to the placenta. Enacting
this scenario takes a very delicate balancing of conflict-
ing biological needs between the mother and fetus. The
fetus, on the one hand, requires its invasive trophoblasts
to penetrate the mother’s uterus aggressively in search of
vessels to modify. The mother, on the other hand, must
protect herself from the invasive trophoblasts, lest they
completely penetrate her uterus, causing her to hemor-
rhage and bleed to death.

Formation of the Invasive Trophoblasts

Traditionally, two types of trophoblasts have been de-
scribed: the cytotrophoblast and the syncytiotrophoblast.
With the development of reproducible methods of tropho-
blast culture,8 improved markers of trophoblast synthetic
activity,9 and a deeper understanding of the functions
that trophoblasts play in the uteroplacental unit,10–14 we
now can identify more specific subsets of trophoblasts.
These include the undifferentiated mononuclear precur-
sor of all trophoblast forms, the cytotrophoblast; the en-
docrinologically active villous syncytiotrophoblast; the
junctional trophoblast that attaches the anchoring villi to
the maternal decidua at Nitabuch’s layer; and the inva-
sive intermediate trophoblast that migrates into the de-
cidua, the myometrium, and finally the spiral arteries of
the uterus (Figure 1).15

The presence of invasive trophoblasts within the de-
cidua and myometrium has been appreciated for some
time,16–19 but it is only relatively recently that researchers
have attributed specific markers, and hence specific
functional characteristics, to these cells. The first clear
marker of the invasive trophoblast was described by
Kurman and colleagues,20 who demonstrated that first-
trimester invasive trophoblasts react with anti-human pla-
cental lactogen antibodies. They coined the term “inter-
mediate” invasive trophoblasts partly because of their
intermediate size between cyto- and syncytiotropho-
blasts. Feinberg et al11 demonstrated that these same
cells express plasminogen activator inhibitor type 1, sug-
gesting that intermediate invasive trophoblasts may use,

in addition to the collagenases, the plasminogen activa-
tor system to perform their invasive function. More re-
cently, Zhou et al14,21,22 have shown that as trophoblasts
leave the cell columns and enter the maternal space, they
lose integrins for basement membrane interactions (pos-
sibly laminin) and gain integrins for fibronectin and type I
collagen interactions.

Decidualization

To protect the mother from the onslaught of invasive
trophoblasts migrating toward the uterine spiral arteries,
the endometrial stroma transforms itself into a dense
cellular matrix known as the decidua.23 The decidua
impedes the movement of invasive trophoblasts both by
forming a physical barrier to cell penetration and by
generating a local cytokine milieu that promotes tropho-
blast attachment rather than invasion.7,24–28 The fate of
the invasive trophoblasts is, in part, likely the result of the
balancing of the invasive promoting proteases made by
the trophoblasts and the inhibitors of invasion made by
the decidua.7,11,29,30 Fisher and colleagues have re-
cently proposed that local oxygen tension in the decidua
and upper myometrium also plays a role in regulating
trophoblast invasion by forming a cytotactic gradient
within the placental bed.31–33 Thus, the ultimate disposi-
tion of any particular invasive trophoblast appears to be
determined by the sum of the proinvasive factors (intrinsic
invasive proteases made by the trophoblasts and the acti-
vators and attractants within the decidua) and the inhibitors
of invasion (the physical barrier and the inhibitors of inva-
sion made by decidua).7,27,30,34–39 Imbalances on either
side of this equation can lead to abnormally limited or ab-
normally excessive invasion.23,26,33,40–43

The first signs of the decidualization reaction can be
seen as early as day 23 (10 days after the peak of the
luteinizing hormone surge) of the normal menstrual cycle,
when the spiral arteries of the endometrium first become
prominent.44 Over the next few days, the stromal cells
surrounding the spiral arteries become increasingly eo-
sinophilic and enlarged as the differentiating effect of
progesterone transforms these cells into predecidual
cells.45 The progressive decidualization of the endome-
trial stroma in the later part of the menstrual cycle pre-
pares the uterine lining for the presence of the invasive
trophoblasts, but simultaneously closes the door to im-
plantation.46,47 Though the state of the endometrium in
the later part of the cycle is ideal to protect the mother
from the invasive trophoblasts in the event of a preg-
nancy, it is entirely unsuited for implantation. But how can
a nonreceptive decidualized endometrium be returned to
a receptive nondecidualized endometrium if no preg-
nancy occurs? The solution is menstruation.48–50

Menstruation

Menstruation, the breakdown and sloughing of the en-
dometrial lining at the end of a hormonally driven cycle, is
seen only in higher primates and humans.48 Interestingly,
these same species are the only animals that exhibit
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evidence of trophoblast invasion of uterine vessels, sup-
porting the contention that menstruation is a biological
necessity in species that exhibit trophoblast invasion.
Thus, it appears that menstruation is the mechanism by
which the endometrium reestablishes a receptive phase
following a cycle without conception. This would help to
explain the complex nature of the menstrual cycle with an
estrogen-driven proliferative phase (to rebuild the lost
endometrial tissue) followed by a progesterone-driven
differentiation phase (that first opens the window of re-
ceptivity and later closes this window with the onset of
decidualization).51,52

Trophoblast Invasion

Anatomy of Trophoblast Invasion

The morphological aspects of human trophoblast inva-
sion have been examined in great detail over the last 20
years.11,17,31,39,43,53–58 Since it is difficult to reliably ob-
tain human material before 4 weeks of gestation, much of
our morphological understanding of the earliest phases
of trophoblast invasion has been extrapolated from mon-
key material.59–62 Examination of monkey implantation
sites has revealed that trophoblasts begin to migrate
down into the maternal spiral arteries as early as 10 days

Figure 1. Pathways of trophoblast differentiation. Just as the undifferentiated basal layer of the skin gives rise to differentiated keratinocytes, the
cytotrophoblast (the stem cell of the placenta) gives rise to the differentiated forms of trophoblasts. Left: Within the chorionic villi, cytotrophoblasts fuse
to form the overlying syncytiotrophoblast. The villous syncytiotrophoblast makes the majority of the placental hormones, the most studied of which is
human chorionic gonadotropin (hCG). Cyclic adenosine monophosphate (cAMP) and its analogues, and more recently hCG itself, have been shown to
direct cytotrophoblast differentiation toward a hormonally active syncytiotrophoblast phenotype. Center: At the point where chorionic villi make contact with
external extracellular matrix (decidual stromal ECM in the case of intrauterine pregnancies), a population of trophoblasts proliferates from the cytotrophoblast layer to
form the second type of trophoblast, the junctional trophoblast. The junctional trophoblasts make a unique fibronectin, trophouteronectin (TUN), that appears to mediate
the attachment of the placenta to the uterus. Transforming growth factor-b (TGFb) and, more recently, leukemia inhibitory factor (LIF) have been shown to down-regulate
hCG synthesis and up-regulate TUN secretion. Right: Finally, a third type of trophoblast, the invasive intermediate trophoblast, differentiates toward an invasive
phenotype and leaves the placenta entirely. In addition to making human placental lactogen, these cells also make urokinase-type plasminogen activator and type 1
plasminogen activator inhibitor (PAI-1). Phorbol esters have been shown to increase trophoblast invasiveness in in vitro model systems and to up-regulate PAI-1 in
cultured trophoblasts.
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after fertilization, and at 14 days, many of the spiral
arteries beneath the conceptus are totally occluded.62

The specificity of this vascular interaction is revealed by
the fact that no such invasion takes place in the veins. Do
human trophoblasts behave in the same fashion? This
question has been more difficult to answer, and address-
ing it has demanded varied approaches.

Hustin and Schaaps, using anatomical and ultrasono-
graphic approaches, suggested that there is in fact tro-
phoblast plugging of the maternal spiral arteries and a
coincident decrease in maternal perfusion of intervillous
space until 12 weeks of gestation.63 Rodesch et al64 then
hypothesized that it is critical that maternal blood flow to
the embryo be limited very early in gestation to protect
the conceptus from excessively high oxygen levels dur-
ing critical early stages of differentiation. This concept
was supported by Coppens et al,65 whose study of serial
ultrasounds on normal pregnant women between 8 and
14 weeks showed no uteroplacental blood flow in the first
trimester but a significant increase at approximately 12
weeks, which reached maximal levels at 14 weeks. More
recently, Burton et al critically examined the Boyd Col-
lection, 12 early-pregnancy hysterectomy specimens
ranging from 43 to 130 days of gestation housed in the
Department of Anatomy at the University of Cambridge,
and showed that there was significant blockage of the
maternal spiral arterioles by trophoblasts at points of
contact with the intervillous space between 6 and 8
weeks, but that this blockage was gradually eliminated
between 8 and 12 weeks of gestation.66

Despite its teleological attractiveness, the first trimes-
ter low-flow concept has not been universally accept-
ed.67–69 The controversy over this issue, however, seems
to have been settled recently with the use of an advanced
oxygen sensing probe. In this issue of The American
Journal of Pathology, Jauniaux et al70 report the direct
documentation of a significant increase in placental in-
tervillous oxygen tension, and hence maternal perfusion
of the placenta, between 8 and 12 weeks of gestation.
This article also reports that, coincident with this in-
creased perfusion and oxygen tension within the pla-
centa between 8 and 12 weeks, there is a corresponding
increase in anti-oxidant systems, including catalase, glu-
tathione peroxidase, and superoxide dismutase, presum-
ably to counteract the oxidative stress of the increased
intervillous perfusion and oxygen tension. If we accept
trophoblast plugging and the first trimester low-flow con-
cept, one question remains: how are the first-trimester
embryo’s nutritional needs met? Hustin and Schaaps
suggested that the intervillous space is bathed by an
acellular fluid that could be plasma filtered by the tropho-
blastic shell.63 Burton and colleagues have offered an-
other possibility (Burton GJ, Watson AL, Hempstock J,
Skepper JN, Jauniaux E, submitted). By examining mul-
tiple human implantation sites preserved in the Boyd
Collection,66 these investigators noted the presence of
dilated endometrial glands below openings to the inter-
villous spaces. It is well known that the endometrial
glands of early pregnancy are characterized by hyper-
secretion.71 Combining these observations, Burton and
colleagues have suggested that secretions from the hy-

persecretory endometrial glands contribute nutrients to
the embryo in the first trimester. In confirmation of this
hypothesis, these workers noted in several specimens
glandular secretions within the intervillous spaces near
the openings of the gland mouths. Their hypothesis is not
unreasonable in light of the fact that other animals, most
notably the rabbit and pig, bathe their early conceptuses
in endometrium-derived fluids, such as uteroglobin,72–74

which has also been recently identified in the human.75

Concomitant with endovascular plugging of the mater-
nal spiral arteries, the process of trophoblast penetration
of the maternal spiral arteries and their conversion to
low-resistance channels begins (Figure 2). Pijnenborg
and colleagues, after examination of many placental bed
biopsies from the first and second trimesters, proposed a
two-wave hypothesis for trophoblast invasion: an initial
interstitial invasion in the first trimester followed by endo-
vascular invasion in the second trimester.17,18,76,77 Mati-
jevic et al,78 using transabdominal color flow and pulsed
Doppler imaging, showed that these changes were com-
plete at around 17 weeks of gestation and that imped-
ance to blood flow is lowest in the uterine arteries in the
central area of the placental bed, consistent with the
invasive trophoblast physiological changes seen in pla-
cental bed biopsies in that region.18 Pijnenborg also
made the observation in his studies that the interstitial
trophoblasts were able to modify the maternal arteries
indirectly, presumably via paracrine action, simply by
surrounding these vessels.18 One possible mediator of
this action is nitric oxide (NO), which is capable of mark-
edly vasodilating arteries and arterioles. In support of this
concept, Nanaev et al,79 from examination of the guinea
pig placental bed, have suggested that NO production
by invasive trophoblasts may augment maternal vascular
dilation before trophoblast penetration. However, Lyall et
al57 have recently demonstrated in the human that inva-
sive trophoblasts do not express NO synthase, raising
doubts about the role of NO in maternal vascular dilation
in the human. Further research will be necessary to iden-

Figure 2. Invasive trophoblasts. Uterine spiral artery (V) containing maternal
blood (M) from a 4-week pregnancy. The maternal endometrium (D) has
become decidualized, meaning that the stromal cells have been transformed
into large, pale cells (*). Infiltrating between these decidual cells are the
invasive trophoblasts (some examples are highlighted by arrows) which
have begun to modify the vessel wall (').
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tify what other paracrine factors, if any, may assist in the
modification of the maternal spiral arteries.

Not all investigators concur on the role of invasive
trophoblasts in maternal vascular remodeling. Craven et
al have proposed that the maternal decidua, not the
invasive trophoblasts, mediates this transformation.80

However, given the voluminous literature supporting the
role of invasive trophoblasts as the mediators of maternal
vascular transformation in pregnancy, validation of the
Craven hypothesis must await further observation. De-
spite the unresolved issues surrounding our understand-
ing of the anatomy of trophoblast invasion, it is still far
better than our understanding of the mechanisms that
regulate trophoblast invasion.17,18,76,77

Regulation of Trophoblast Invasion

The precise mechanisms by which trophoblasts mi-
grate from the placenta into the uterus, direct their
movement toward the maternal spiral arteries, modify
these vessels to form the low resistance channels
needed to carry the increased maternal blood flow to
the placenta, limit their invasion to the upper third of
the uterus, and finally are eliminated after delivery are
not known. However, some pieces of this story are
understood, and, with increased investigation, we con-
tinue to make progress in this area.7,30,81 Because
trophoblast invasion appears to involve many steps, it
is not surprising that trophoblasts use a variety of tools
to perform these many functions.

The first challenge for the trophoblasts is to alter
their differentiation pathway from that of a villous tro-
phoblast to an anchoring trophoblast.7,15 This process
occurs, in part, due to contact of trophoblasts with the
decidua, via either paracrine stimulation or direct con-
tact with the decidual extracellular matrix (ECM). Vico-
vac et al have recently shown that villi incubated in
direct contact with decidua form cell columns, sug-
gesting that signals in the decidual ECM play a role in
this differentiation switching,82 although these studies
do not rule out a diffusible paracrine. In fact, there is
clear evidence for the presence of decidual cytokines
that have a profound effect on trophoblast differentia-
tion.7,9 For example, transforming growth factor-b is
not only made by the decidua,25,83 it has also been
shown to alter trophoblast differentiation toward an
anchoring phenotype.9,15,84 Leukemia inhibitory factor,
an endometrial cytokine that has been shown to be
essential for mouse implantation,85,86 has also been
identified in human endometrium87,88 and has also
been shown to alter trophoblast differentiation from a
villous to an anchoring phenotype (Figure 1).89

Although markers of invasive trophoblasts have been
described,11,20,37,90 the factors that direct trophoblast
differentiation toward an invasive phenotype have not
been established. Suggested regulators of trophoblast
invasion include epidermal growth factor,36 colony stim-
ulating factor-1,91,92 protein kinase C activators,93 hepa-
tocyte growth factor,94 and even oxygen.31–33

Uteroplacental Blood Flow in Pregnancy

Measurement of Blood Flow in Pregnancy

The action of the invasive trophoblasts on the maternal
spiral arteries leads to a very low resistance uteroplacen-
tal circulation, which facilitates the marked increase in
blood flow seen in these vessels at term. Using a variety
of techniques, many groups have estimated the amount
of blood flow into the gravid uterus.95–99 This work has
demonstrated that at term a woman’s total blood volume
increases by about 40% compared to her nonpregnant
state.100 Concomitantly, her cardiac output rises 30 to
35% and the total uteroplacental blood flow increases to
about 25% of her total cardiac output.101,102 Direct mea-
surements of uterine blood flow in the nonpregnant state
have shown a combined uterine artery flow in the follicu-
lar phase to be approximately 45 ml/minute,103 whereas
the total uterine flow at term has been estimated to be as
high as 750 ml/minute,96 representing an almost 17-fold
increase in flow to the uterus. Improvements in tech-
niques to estimate blood flow in the gravid uterus have
suggested that this last calculation may be too high.
Thaler et al99 used a transvaginal duplex Doppler ultra-
sonography system to compare the blood flow charac-
teristics in the ascending uterine artery before and during
pregnancy in the same patient and determined that there
was a 3.5-fold increase in blood flow, still a significant
increase in total blood flow to the gravid uterus.

Regulation of Maternal Blood Flow to the Placenta

As Jauniaux et al70 have shown in this issue of The
American Journal of Pathology, maternal blood flow to the
placenta appears to be restricted in the first trimester, but
begins to increase in earnest at approximately 12 weeks
of gestation. Beyond this jump in uteroplacental blood
flow, is there evidence of additional modulation of mater-
nal perfusion of the placenta? Studies have shown that a
number of exogenous factors can modulate maternal
perfusion to the placenta, but little is known about how, if
at all, the uteroplacental circulation is regulated in normal
pregnancy.

A significant amount of our understanding of what
factors are able to alter uteroplacental blood flow comes
from in vitro studies of isolated maternal uterine arteries
and arterioles. Hansen et al104 showed that vasoactive
intestinal polypeptide and substance P are capable of
dilating isolated uterine arteries. Skajaa et al105 demon-
strated the ability of Mg21 ions to relax uterine arteries,
confirming experimentally what has been known for many
years about magnesium sulfate’s efficacy in the treatment
of preeclampsia.106 Endothelin 1 and endothelin 3 were
shown to be potent vasoconstrictors of uterine arter-
ies.107 Fried and Liu108 confirmed endothelin’s action on
isolated uterine arteries and demonstrated an inhibition of
;60% of this effect with the addition of nifedipine and
diltiazem, both calcium channel blockers. Kublickiene et
al109 showed a similar in vitro effect of isradipine on
endothelin-induced uterine vessel vasoconstriction. Re-
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laxin, another vasodilator, however, was shown not to be
effective in dilating isolated uterine vessels in vitro.110

Other investigators have looked directly at the utero-
placental circulation to assess the role of pharmacologi-
cal agents. For example, Neri et al111 infused L-arginine,
the substrate for NO, intravenously into pregnant women,
assessed uteroplacental vessel pulsatile index by ultra-
sound, and showed a 14% decrease in vascular resis-
tance in women with pre-existing intrauterine growth re-
tardation. Using an oral route, Amit et al112 showed that
isosorbide dinitrate, a NO donor, had a significant effect
on the resistance index in the uterine artery, independent
of maternal heart rate. Low-dose aspirin, though it does
not appear to alter uteroplacental blood flow,113 may
nevertheless have some benefit for patients with pre-
eclampsia.114

Not all pharmacological agents are prescribed. Nico-
tine exposure through smoking has a significant vaso-
constrictive effect on uterine vessels,115,116 causing de-
creased perfusion while the mother is smoking and for 15
minutes after the completion of a cigarette.117 Cocaine, a
well known vasoconstrictor in other organ systems,118,119

has profound effects on the uteroplacental circulation,120

possibly through increased production of thrombox-
ane.121 The vasoconstrictive effect of cocaine can be so
potent that it can cause severe intrauterine fetal damage
and death due to a profound decrease in uteroplacental
blood flow.122–126

In a holistic approach, Longo has looked at uteropla-
cental blood flow in the context of the whole pregnant
patient.127 He has proposed that there exists a feedback
loop between the developing fetus, placenta, and
mother, mediated by fetal steroids, that regulates the
maternal cardiovascular adaptations seen in pregnancy
to optimize fetal growth and development. Abnormalities
in this complex network of hormonal regulation may con-
tribute to poor fetal outcome.

Preeclampsia: Pathology of Trophoblast
Invasion

Preeclampsia, the clinical state before full-blown eclamp-
sia (seizures), is one of the toxemias of pregnancy. Its
basic clinical definition is a “pregnancy-specific condi-
tion of increased blood pressure accompanied by pro-
teinuria, edema, or both.”106 Despite the simplicity of this
description of clinical signs and symptoms, the etiology
of the disease has remained elusive.22,56,128–145 Many
phenomena have been investigated, but the recurring
theme appears to be an abnormally low blood flow into
the placenta.19,141 One of the difficulties has been to
distinguish between primary cause and secondary ef-
fects.130–135,138,146 Part of this difficulty may be attribut-
able to the fact that the common end result, low utero-
placental blood flow, may be caused by many primary
defects.14,22,42,147–149 Therefore, preeclampsia/eclamp-
sia may not be a disease, but a syndrome with many
causes. Significantly, one of the most frequent findings in
preeclampsia is decreased or absent trophoblast inva-
sion of the maternal spiral arteries.19,56,150–153

Decreased or absent trophoblast invasion may be a
consequence of primary defects in the invasive tropho-
blasts or in the environment that the trophoblasts are
attempting to invade. Studies have shown that in some
cases of preeclampsia there are abnormalities in tro-
phoblast function, including but not limited to integrin
expression,22,58 thrombomodulin gene expression,154

glycogen metabolism,155 decreased galactose-a-1–3
galactose expression,156 and expression of plasmino-
gen activator inhibitor-1.157 In an unusual clinical pre-
sentation, preeclampsia has been associated with tri-
somy 13, the chromosome that carries the gene for
type IV collagen.147 Placental bed biopsy in this mul-
tiparous woman carrying a trisomy 13 fetus showed
lack of trophoblast invasion of maternal spiral arter-
ies.147 These trophoblasts may have had difficulty in-
vading through the maternal ECM because of in-
creased type IV collagen production. In addition to
primary trophoblast defects, many cases of pre-
eclampsia appear to be related to maternal immuno-
logical reaction against the invading tropho-
blasts.128,134 Some authors have suggested that the
invasive trophoblasts exhibit “shallow invasion” in
cases of preeclampsia.42,135 However, this finding is
not confirmed by clinical observation. The most com-
mon clinical finding in cases of preeclampsia is that the
invasive trophoblasts have reached the vicinity of the
spiral arteries, but have not penetrated them,7,15,19 as
can be seen from a placental bed biopsy in a typical
case of preeclampsia (Figure 3). Failure to convert the
maternal spiral arteries into low-resistance channels
can induce the placenta to secrete vasoactive sub-
stances that result in maternal hypertension.146,158 If
the maternal blood pressure rises significantly, the spi-
ral arteries can be damaged and may even become
occluded, leading to placental infarction.4,141,159

Figure 3. Failure of invasive trophoblasts to penetrate the maternal spiral
arteries. Normally the invasive trophoblasts (T) infiltrate through the endo-
and myometrium, reach the spiral arteries (*), and convert their muscular
walls into pliant channels. In cases of preeclampsia, the trophoblasts often do
not complete the final arterial penetration, possibly due to the maternal
lymphocytes that commonly surround the spiral arteries. Compensatory
maternal hypertension can lead to additional spiral artery damage or even
occlusion. V, maternal uterine vein.
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