Activation neuroimaging studies - GABA_A receptor function - alcohol cues in alcoholism

Professor David Nutt
Psychopharmacology Unit, University of Bristol.
MRC Clinical Sciences Centre, London.

Study 1. GABA A receptor sensitivity

Hypothesis

 Alcoholics would have reduced GABA-A receptor sensitivity = tolerance

Test = challenge with midazolam – controlling for brain entry and receptor occupation – new PET pk/pd paradigm

- Friston et al 1996 JCBFM

Subject characteristics

	Control <u>+</u> s.d [n=10]	Alcoholics <u>+</u> s.d [n=11]
Age	46.2 <u>+</u> 8.1	44.45 <u>+</u> 6.12
SADQ [10,10]	4.1 <u>+</u> 5.7	36.5 ± 10.0
Years of heavy drinking	N/A	20.1 <u>+</u> 6.1
SSAI [8,11]	27.4 <u>+</u> 6.7	32.5 <u>+</u> 9.4
STAI [10,11]	32.7 ± 5.8	40.4 ± 15.3
BDI [10,7]	3.1 <u>+</u> 2.8	6.3 <u>+</u> 3.9
Family history	2	2

Scanned at least 6 weeks after withdrawal

Inject tracer [11C]flumazenil

T=0

PET scan (105 min)

Inject tracer [11C]flumazenil

Infuse midazolam 50µg/kg over 5 min

T=0

→ T=30min

PET scan (105 min)

saccadic eye movements

blood for midazolam concentration

Whole head time-radioactivity curve for ¹¹C-flumazenil.

time (secs)

EEG beta activity.

Results.

No differences in

- midazolam levels
- ¹¹C-flumazenil metabolism
- rate constants describing ¹¹C-flumazenil uptake [K1, k2, k2d]
- brain receptor occupancy

Brain receptor occupancy by midazolam

Change in EEG beta activity after midazolam infusion

Subjective sleep ratings.

Saccadic eye movements Time first able to perform SEMs.

Reduced total EEG sleep time after midazolam

*: p < 0.05

Conclusion.

Reduced function of the GABA-BZ receptor in alcohol dependence

- for induced sleep
- but not EEG beta response.

Issues

- ? due to changes in the subunit profile of the GABA-benzodiazepine receptor
- ? tolerance or predisposing trait marker

Functional neuroimaging (activation studies) to map the neural circuits associated with addiction

Abstinent alcoholics > 6 weeks
In abstinence-focussed program

Imaging of craving

- PET
 - $-H_{2}^{15}O$
 - ¹⁸F-FDG
- fMRI
- Drug
 - -Cocaine
 - Alcohol
 - –Opiate

- Paradigm (individual/generic)
 - 'Spontaneous'
 - -Cue-induced
 - Visual
 - Auditory
 - Actual drug given
 - Alcohol
 - Cocaine

Cue exposure & craving: our PET protocol – six repetitions

Heroin addicts – cue exposure

Region of activation covering left anterior cingulate and medial pre-frontal gyri

All subjects (n=12)

Activation centered on Talairach co-ordinates -10,46,24 mm

Peak t = 4.52 (p<0.005 corrected for multiple comparisons)

Daglish et al 2001

Activation in the left orbitofrontal cortex covaries with opiate craving

- Area of rCBF that co-varies with the composite score (craving & urge to use)
- Subjects who craved during the experiment (n=8)
- Activation centered on Talairach co-ordinates -26, 44,
 -14 mm
- Peak t = 5.19 (p<0.05 corrected for multiple comparisons)

Subjects

- Alcohol Dependent Group
- Control Group
- 6 male abstinent
 (≥ 6 weeks) alcohol
 dependent subjects

– 6 male control subjects

- mean age : 41.5 yr

- mean age: 36.8 years

-SADQ: 31.8 + 12

- SADQ: 2.25 + 1.9

- OCDS: 16.7 ± 3.2

- OCDS: 4.8 + 2.2

- ACQ: 144 <u>+</u> 46

 $- ACQ: 69 \pm 29$

Cue exposure – real booze

Subjective Effects of Alcohol Stimuli urge to use questionnaire - Bohn

Heroin addicts' craving

Composite 'crave & urge' score derived as mean of 'crave' and 'urge to use' VAS scales

Plotted for each repetition of the neutral and craving stimuli

Activation in the occipital lobe.

- occipital cortex activation in alcohol dependent and control subjects (n=12)
- increase in rCBF on L was statistically significant (Talairach co-ordinates –20, -94, -14mm, t= 3.81, number of voxels = 208, cluster-level p<0.05).
- increase in rCBF on R was smaller and almost significant (Talairach co-ordinates 24, -90, -8mm, t= 3.96, number of voxels = 168, cluster-level p=0.09).

Activation in alcoholics but not controls in response to the alcohol cue.

In left medial prefrontal region : -18,48,28mm.

Significant increase in rCBF in response to alcohol stimulus [cluster-level p<0.05 corrected for small volume 10mm radius], but not in control group.

Activation in L medial prefrontal gyrus

Alcohol dependent subjects

Control subjects

Alcohol Stimulus

Neutral Stimulus

Significant increase in alcohol dependent subjects compared to controls: voxel level p=0.057, cluster level p=0.038

Summary.

 Robust craving for alcohol is difficult to induce in the scanner

- Activation in :
 - left medial frontal cortex in alcoholics only,
 - represents monitoring and manipulation of information within working memory and attention
 - occipital cortex in both controls and alcoholics
 - represents perception of the alcohol cue and maintenance or sustained attention to it

Why no robust craving?

- Choice of patients
 - length of abstinence
 - severity of alcoholism, level of craving
- Choice of controls
 - unlike other neuroimaging studies in cocaine and opiates, control subjects have experienced alcohol
- Wrong paradigm
 - worked outside the scanner

Acknowledgements

Psychopharmacology Unit, Bristol, UK

Prof. David Nutt Dr Judy Myles

Dr Mark Daglish Dr Anne Lingford-Hughes Dr Aviv Weinstein

Dr Andrea Malizia Dr Brian Stevenson Dr Susan Wilson

Dr Adrian Feeney Dr Jan Melichar

MRC Clinical Science Centre (Cyclotron Unit), UK

Prof. Paul Grasby, Prof David Brooks

All patients and staff at Bristol Specialist Drug & Alcohol Services

This work was funded by an MRC Programme Grant

