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0 Background
@ Comorbidity
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Comorbidity

Multiple disorders or illnesses occur in the same person,

Source: www.depressioncell.com; www.depressiondodging.com
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Comorbidity

=

NIDA:

'/ . .
Research Report Series Dr. Volkow, Director, NIDA:

Comorbidity: Comorbidity is a topic that
il S5 et our stakeholders—patients,
family members, health care
professionals, and
others—frequently ask about.
It is also a topic about which

from the director:

A

What Is

Comorbidity? we have insufficient

hen two disorders or illne:

information, so it remains a
research priority for NIDA.

Source: www.nida.nih.gov
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Possible Mechanisms for Comorbidity

@ Mental disorder = drug use disorder
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20 [~ B Any mood disorder
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Source: www.nida.nih.gov
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Possible Mechanisms for Comorbidity

@ Mental disorder = drug use disorder
@ Drug use disorder = mental disorder
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Possible Mechanisms for Comorbidity

@ Mental disorder = drug use disorder
@ Drug use disorder = mental disorder
mental disorder

® Common etiology = { drug use disorder

80
I Current smokers

%
No Mental Major Alcohol Post-Traumatic Drug Bipolar
lliness Depression Abuse or Stress Abuse or Disorder
Dependence Disorder Dependence

Source: www.nida.nih.gov
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0 Background

@ Disorders, Genes and Covariates
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Genotypes and Covariates

6. What is Person 1’s sex? Mark | X| ONE box.
Male Female
7. What is Person 1’s age and what is Person 1's date of birth?
Please report babies as age 0 when-the child is less than 1 year old.
Print numbers in boxes.
Age on April 1, 2010 Month Day Year of birth

=>» NOTE: Please answer BOTH Question 8 about Hispanic origin and
Question 9 about race. For this census, Hispanic origins are not races.
8. Is Person 1 of Hispanic, Latino, or Spanish origin?
No, not of Hispanic, Latino, or Spanish origin
Yes, Mexican, Mexican Am., Chicano
Yes, Puerto Rican
Yes, Cuban

Yes, another Hispanic, Latino, or Spanish origin — Print origin, for example,
Argentinean, Colombian, Dominican, Nicaraguan, Salvadoran, Spaniard, and so on.

9. What is Person 1's race? Mark X| one or more boxes.
White
Black, African Am., or Negro
American Indian or Alaska Native — Print name of enrolled or principal tribe. i

Asian Indian Japanese Native Hawaiian

Chinese Korean Guamanian or Chamorro
Filipino Vietnamese Samoan

Other Asian — Print race, for Other Pacific Islander — Print
example, Hmong, Laotian, Thai, race, for example, Fijian, Tongan,
Pakistani, Cambodian, and so on. ¥ and so on. ¥

Source: en.wikipedia.org; 2010.census.gov




Disorders, Genes and Covariates

@ Covariates: interact or confound genetic effects
@ Failure to account for covariates: bias or reduced power
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Study Design

@ Population-based studies

@ Family-based studies

Nuclear families

n, siblings n, siblings

_
N g

n families
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e Weighted Association Test
@ Generalized Kendall’s Tau
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Notation and Hypothesis

@ n study subjects, from a population-based study or family-based
study
@ For each subject:
e A vector of traits T = (T, ..., T®)
e Marker genotype M
e Parental marker genotypes MP¢ (only available in a family-based
study)
o A vector of covariates Z = (z(V), ...,z
@ Null hypothesis: no association between marker alleles and any
linked locus that influences traits T
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Typical Response

Fagerstrom Test for Nicotine Dependence

. Quantitative Scale

Pl

{ v /Jcigar ay doyouusually smoke?
1.\131“ mailz}c ettes a day do youusually smoke
1to10 0 point 21to 30 2 points
11t0 20 1 point 30 ot more 3 points

rdinal Scale

—

2. How soon after youwake up do you smoke your first cigarette?

After 60 minutes 0 point 6 - 30 minutes { 2 poin
31-60 minutes 1 pomnt < 5 minutes A3 points
N

3. Do yousmoke more during the first two hours of the day than during the rest of the day?
No 0 point Yes 1 pont
4. Which cigarette would y ou most hate to give up?

Any other cigarette than the first 0 point Thefirst cigarette in the 1 point
one morning

3. Do voufind it difficult to refrain from smoking in places where it 1s forbidden, such as
public buildings, on airplanes or at work?

—
(No) Dichotom

us Scale  Opoint {Yes) 1 pomnt

—

6. Do youstill smoke even when you are so ill that y ou are in bed most of the day?

No 0 point Yes 1 point

Total points




Multivariate Distributions
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Kendall’s Tau

@ A nonparametric statistic measuring the rank correlation between
two variables

@ Pairs of observations: {(X;,Y;) :i=1,...,n}
® (X;,Y;) and (X;,Y)):
e Concordant, if X; — X; and Y; — ¥; have the same sign
e Disconcordant, if X; — X; and ¥; — ¥; have the different sign

@ Kendall’s tau:
7=2(A—B)/{n(n—1)}
A and B: numbers of concordant and disconcordant pairs
e Or B
n .
. <2> S sign{ (X; — X)(¥i — Y))}

i<j
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Generalized Kendall’s Tau

1 1
° F,= {fl(Ti( ) _ Tj( ))7 o Jcp(Ti(P) _ Tj(l’))}/
e fi(+): identity function for a quantitative or binary trait
@ fi(+): sign function for an ordinal trait

@ D; = C; — C;. C: number of any chosen allele in marker genotype
M

@ Genaralized Kendall’'s tau (Zhang, Liu and Wang, 2010):
n -1
U= <2> ZDUFU
1<J

@ Special cases:

o FBAT-GEE (Lange et al. 2003)
e Test for a single ordinal trait (Wang, Ye and Zhang, 2006)

Heping Zhang (C%S2, Yale University)



e Weighted Association Test

@ Asymptotic Distribution and Power
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Hypothesis with Covariates

@ New null hypothesis: no association between marker alleles and
any linked locus that influences traits T conditional on covariates Z
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Weighted Test

@ A weight function w(Z;, Z;) imposes a relatively large weight when
Z; is close to Z;, and a relatively small weight when Z; and Z; are

far away
@ Weighted U-statistic:

-1
n
S = <2) > DiFyw(Z:,Z))
i<j
@ Weighted test statistic:
Xz = {8 — Eo(8)} Varg (S){S — Eo(8)}
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Weight Function—I: Distance

o Write Z = (Z<',Z°"")’, with Z*° for the continuous covariates and
Z<“ for the categorical covariates

w(Zi, Zj; h, q) = Wall|Z? = Zi° )W A2 # Z57) }

@ For example,
Wi (u) = exp(—u?/2h?), h > 0,
Wy(v) = (1 - g)I(v=0)+gl(v=1), 0< g <0.5
@ Weighted U-statistic (called fixed-(%, ¢) U-statistic):

—1
n
S(h,q) = <2> > DyFyw(Zi, Zj; b, q)

i<j

Heping Zhang (C%S2, Yale University)



Weight Function—II: Propensity Score

@ Propensity score: probability of a unit being assigned to a
particular treatment given a set of covariates

@ Causal effect analysis: match subjects according to their
propensity scores (Rosenbaum and Rubin, 1984)

@ Genomic propensity score: p(z) = {p1(z),p2(z)},
pe(z) = P(C = c|Z =z)

@ Genetic association analysis: match subjects according to their
genomic propensity scores

@ Weight function:

w(Zi; Zj) = Willlp(Zi) = p(Z) ]},

with W,(u) = exp(—u?/2h%), h >0

Heping Zhang (C%S2, Yale University) MSU



Asymptotic Distribution: Setting

@ Treating the offspring genotype as random

@ Conditioning on all phenotypes and parental genotypes (if
available)

@ Eliminates the assumptions about phenotype distribution, genetic
model and parental genotype distribution

@ Robust and less prone to population stratification
@ In addition, conditioning on covariates

Heping Zhang (C%S2, Yale University) MSU




Asymptotic Distribution: Null Hypothesis

@ When n — oo,
Vary {8 (h, ¢)}[S(h. q) — Eo{S(h,q)}] =+ N(0,1,)
@ Fixed-(h, q) test statistic:

D
X2(h,q) — X3

@ Mean and variance:

Eo{S(h,q)} = u;Eo(Ci| M, Zs),

Varg{S(h,q)} = n—l 2E:E:u,uCovo (Ci, GIMY MY, 2, Z,),
i=1 i=1

with l_ll' = I’l_l Z;l:] FijW(Zi, Zj7 h7 q)
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Asymptotic Distribution: Power

@ Under the alternative hypothesis,

p
X (hq) ~ Y exi(di
i=1

Ap = py — po = Er{S(h,q)} — Eo{S(h, 9)}

3o = Varg{S(%, q)}

3, = Var {S(h, q)}

el > - >e, > 0: eigenvalues of =,/°x;'%)/?

bi = AH,

Afi;: ith component of Afy = Q% *Ap

o Q: an orthonormal matrix, Q%}/*S; '=/Q’ = diag(ey, .. ., ¢,)

Heping Zhang (C%S2, Yale University)



Factors Determining the Power

@ The conditional power P: P = P{ P eix3(gi) > qx,%(l - a)}
@ Taking a family-based study as an example,

2
By = ZuiE(Ci\ThZi,Mém)
i=1

n—1+¢
4 G
Bio= o 2 B Cov(C G Ty 2 2, M, M)
i=1 j=1

P(T|C=c,Z)P(C=c|MP)
> P(T|C=c' Z)P(C=c'|MP%)

@ By Bayes’ theorem, P(C = ¢|T,Z, MP*) =

e Penetrance: P(T|C =¢,Z)
o Allele frequency: P(C = c|MP*)

Heping Zhang (C%S2, Yale University) MSU



Power Approximation

Using the result from Liu et al. (2009), we have

P~ P{xj(v) > ¢},

where I, v, and ¢* depend on p, and X;.

Heping Zhang (C%S2, Yale University)



e Weighted Association Test

@ Application to WTCCC Bipolar Disorder Data
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WTCCC Bipolar Disorder Data

@ Collected by Wellcome Trust Case-Control Consortium (WTCCC,
2007, Nature)

e Phenotype: 1998 cases/3004 controls of bipolar disorder
e Genotype: genotyped by Affymetrix GeneChip 500K arrays
e Covariates: gender, age at recruitment
@ Our method: weighted test using propensity score approach
(h=1)
@ Methods for comparison: non-weighted test and logistic
regression

@ Strong association: p-value < 5 x 10~7; moderate association:
5x 1077 < p-value < 107

Heping Zhang (C%S2, Yale University)



Manhattan Plot: Comparison of Three Methods

Non-weighted Test

-log10{Observed vaue)

Chromosome 5420259

Weighted Test L8782

151344485
1511647459

-log10(Observed vajue)
012345878

Chromosorme
Logistic Regression

153761218
15481520

-log10{Observed yalue)
0123456/78

Chromosome




GWAS Results

Chr. SNP Position Non-weighted Weighted Logistic Regression
6 rs9378249 31435680 1.21e-8 1.39%¢e-8 1.71e-9
16 rs420259 23541527 8.51e-9 6.59%e-8 3.33e-9
16 rs2387823 51445620 2.90e-6 1.30e-7 1.77e-6
16 rs1344485 51469833 1.78e-6 1.79e-7 1.41e-6
16 rs11647459 51473252 2.93e-6 2.76e-7 1.89e-6
17  rs12938916 53221286 4.80e-7 1.11e-6 8.8%e-7
20 rs4815603 3720527 3.00e-6 1.42e-5 4.80e-7
20 rs37612181 3724175 1.13e-6 3.27e-6 2.16e-7

Heping Zhang (C%S2, Yale University) MSU



Propensity Scores: Estimation

Chr. SNP Gender Age
Coefficient p-value Coefficient p-value
16 rs2387823 0.0021 0.970 0.0031 0.902
16 rs1344485 -0.0028 0.959 -0.0049 0.850
16 rs11647459 0.0004 0.994 0.0038 0.882
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Propensity Scores: Histograms

rs2387823 : histogram of propensity score 1
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Significant Region

rs420258
rs1420239
rs11640993 |
rs1344485 \
rs8056052
rs2192859
1511647459
Is4567706
rs2576561

N
o
=
=
—

@ 29kb region: 7 strongly linked SNPs
@ Haplotype association p-value: 2.64 x 10~7 by weighted test
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Interactions Between rs420259 and New SNPs

Model Variable Coefficient p-value
rs420259 -0.77415 6.43e-8

(1) rs9378249 -0.60212 3.88e-8
rs420259 x rs9378249 0.37602 0.332
rs420259 -0.63671 1.51e-3

(2) rs2387823 -0.18834 1.73e-5
rs420259 x rs2387823 -0.10661 0.561
rs420259 -0.62866 1.10e-3

(3) rs1344485 -0.19898 1.14e-5
rs420259 x rs1344485 -0.10653 0.575
rs420259 -0.67070 4.43e-4

(4) rs11647459 -0.19508 1.53e-5

rs420259 x rs11647459 -0.07443 0.693

Heping Zhang (C%S2, Yale University) MSU



Interactions Among New SNPs

Model Variable Coefficient p-value
rs9378249 -0.49915 1.77e-3

(1)  rs2387823 -0.18455 4.62e-5
rs9378249 x 2387823 -0.10876 0.461
rs9378249 -0.49551 1.07e-3

(2)  rs1344485 -0.20266 1.58e-5
rs9378249 x 1344485 -0.14683 0.344
rs9378249 -0.48910 1.13e-3

(3)  rs11647459 -0.19580 2.74e-5

rs9378249 x rs11647459  -0.14960 0.333

Heping Zhang (C%S2, Yale University) MSU



e Maximum Weighted Association Test
@ Asymptotic Distribution

Heping Zhang (C%S2, Yale University) MSU



Maximum Weighted Test

@ Fixed-(h, q) test: how to choose optimal parameters i and ¢?

@ Choose a grid of 4 and ¢ values and maximize the weighted test
statistic over those choices

@ {hi,...,h,}: pre-specified grid points of i
@ {q1,...,q1,}: pre-specified grid points of ¢

2 _ 2

X7,max — 1S11SILI117alXSleL/z Xr(hllaqlz)

@ Approximate the optimal weighting scheme, yielding the strongest
association measure

Heping Zhang (C%S2, Yale University) MSU



Resampling Approach

@ Population-based studies: restricted permutation in Yu et al.
(2010)

@ Family-based studies: children’s genotypes solely determined by
their parents’ marker alleles, resample the children’s genotype by
Mendelian laws

@ Calculate M resampling test statistics ﬁ’max’l, e ,ﬁ,max,M using M
resampled data

@ Resampling p-value: the proportion of the resampling test
statistics that exceed our observed test statistic, i.e.,

M_l Z]r‘n/lzl I()Zz',max,m > X’Zr,max)

Heping Zhang (C%S2, Yale University) MSU



Asymptotic Distribution: Joint Distribution

@ Equivalently,

2 2
= m R
X7, max 1S11SL13X§2SL2 H 11712H

o R = Vary,*(S){S — Ey(S)}
o S={Shi,q),...,S(h,,qu,)}

@ Varop(S) = diag[Varg{S(h1,q1)}, ..., Varo{S(hr,, q1,)}]: the diagonal
blocks of Var,(S)

Vary /2(S){S — Eo(S)} = N(0,1,1,1,)

o R= Var,, 1/Z(S)V rl/z(S)G, G ~N(0,L.z,)

Heping Zhang (C%S2, Yale University) MSU



Asymptotic Distribution: Uniform Approximation

Assume that the eigenvalues of Varop(S) and Vary(S) are uniformly
bounded from both above and below, i.e., there exist two positive
numbers ¢ and C such that ¢ < Apin{Varop(S)} < Amax{Varop(S)} < C
and ¢ < Amin{Varo(S)} < Amax{Varo(S)} < C uniformly for all n, where
Amin @Nd Amax denote the smallest and largest eigenvalues respectively.
Then for any x € R, asn — oo,

2 D 2
su P( <x> P( max R <X>‘—>0
xep Xr,max = \<h <L 1<h<L, H llJzH =

Heping Zhang (C%S2, Yale University) MSU




e Maximum Weighted Association Test

@ Simulations
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@ Compare the performance of:

e Maximum weighted test
e Non-weighted test

@ Compare the performance of:

e Maximum weighted test
e Other covariate-adjusted tests

Heping Zhang (C%S2, Yale University) MSU



Simulation |; Data Generation

@ Generate the parents’ disease and marker genotypes via the
haplotype frequencies

@ Given the parental genotypes, generate the offspring genotype
using 1cM between the two loci
@ Two covariates are generated: Z«° ~ N(1,2)
e Without confounder: P(Z** =1) =1 - P(Z** =0) =0.7
e With confounder: logit{ P(Z¢ = 1)} = 0.5M"* + 0.5M™°

@ Bivariate ordinal traits are generated according to random effects
proportional odds model:

logit{P(T?) < K)} = yx + oG + feoZ + PeaZ + Uj

withk =1,...,K;,j = 1,2, and (Uy, Us) ~ N(0, %)

Heping Zhang (C%S2, Yale University) MSU



Simulation |; Parameters

@ Number of categories: K} =3 and K, =4

® (a1, a12) =(—0.5,-0.3), (a21, 002, 23) = (=0.5,-0.3,-0.1)
@ 3,=20

@ 5o =08:0=0,0.5,1.0,1.5,2.0

1025
°x= <0.25 1 >

@ The grid of his {C{(Cy/C)/T=D) . [} =0,... L — 1}, with
C, =0.05,C,=10,L; =8
@ The grld of q is {0.512/(L2 — 1) b =0,...,L,— 1}, withL, =5

Heping Zhang (C%S2, Yale University) MSU



Type | Error of Maximum Weighted Test

Significance Level
Confounder n «a=005 a=001 «o=0.001
No 200 0.0466  0.0090 0.0006
400 0.0512  0.0097 0.0010
Yes 200 0.0469 0.0084 0.0007
400 0.0462 0.0090 0.0011

Heping Zhang (C%S2, Yale University)



Power Comparison: Without Confounder

Covariate effect

n a Method 0.0 0.5 1.0 1.5 2.0

200 0.05 Weighted 0.681 0521 0.372 0.275 0.222
Non-weighted 0.726 0.522 0.306 0.189 0.135

0.01 Weighted 0.432 0.281 0.161 0.099 0.071
Non-weighted 0.491 0.283 0.128 0.064 0.041

0.001 Weighted 0.160 0.082 0.036 0.017 0.011
Non-weighted 0.223 0.097 0.028 0.011 0.006

400 0.05 Weighted 0.948 0.848 0.685 0.551 0.448
Non-weighted 0.960 0.838 0.565 0.348 0.233

0.01 Weighted 0.846 0.658 0.441 0.297 0.213
Non-weighted 0.877 0.643 0.321 0.154 0.084

0.001 Weighted 0.563 0.337 0.164 0.091 0.054
Non-weighted 0.671 0.361 0.115 0.040 0.018

Heping Zhang (C%S2, Yale University)
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Power Comparison: With Confounder

Covariate effect

n o Method 0.0 0.5 1.0 1.5 2.0
200 0.05 Weighted 0.695 0.557 0.405 0.310 0.250
Non-weighted 0.728 0.528 0.308 0.194 0.139

0.01 Weighted 0.452 0.305 0.181 0.120 0.087
Non-weighted 0.495 0.288 0.129 0.066 0.041

0.001 Weighted 0.165 0.090 0.046 0.024 0.015
Non-weighted 0.224 0.095 0.032 0.011 0.006

400 0.05 Weighted 0.951 0.867 0.718 0.593 0.493
Non-weighted 0.961 0.834 0.573 0.363 0.251

0.01 Weighted 0.854 0.682 0.483 0.345 0.250
Non-weighted 0.875 0.645 0.332 0.170 0.094

0.001 Weighted 0.572 0.355 0.196 0.111 0.069
Non-weighted 0.665 0.364 0.129 0.044 0.020

Heping Zhang (C%S2, Yale University) MSU



Simulation II: Other Covariate-Adjusted Methods

@ FBAT-GEE (Lange et al. 2003) adjusting for covariates:
o Fit the regression model g(E[TY)]) = o; + N/Z, with g(-) an
appropriate link function
e Replace the original traits 70 with the residuals V) — ¢~ (a; + \/Z)
in the FBAT-GEE test statistic
@ Ordinal trait test (Wang, Ye and Zhang, 2006):

e Deal with a single ordinal trait at a time
e Apply the Bonferroni correction for multiple trait testing

Heping Zhang (C%S2, Yale University) MSU



Simulation II: Data Generation

@ Continuous covariate: Z« ~ N(1,2)
@ Bivariate quantitative traits:

Y(]) :M+BgG+BCDZCO+€j7j: 1727

with (1, €2) ~ 2¢n(x; Z)®@(a'x), x € R? (bivariate skew normal
distribution)

@ Bivariate ordinal traits: discretizing quantitative traits by (50%,
67%) and (33%, 54%, 75%) percentiles

1 025
@ a=(55and X = <0.25 ! )

° N:Oaﬁg:ﬁw:os

Heping Zhang (C%S2, Yale University) MSU



Power Comparison

Significance Level

n Method a=0.05 a=0.01 «=0.001

200 X72',max 0.640 0.381 0.134
FBAT-GEE 0.608 0.355 0.137

Wang et al’s Test  0.448 0.236 0.081

400 X72',max 0.930 0.815 0.518
FBAT-GEE 0.902 0.758 0.499

Wang etal’s Test 0.775 0.590 0.320

600 X72',max 0.991 0.961 0.817
FBAT-GEE 0.982 0.938 0.787

Wang etal’s Test  0.925 0.807 0.585
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@ Analysis of Comorbidity
@ Application to COGA Family Data

Heping Zhang (C%S2, Yale University) MSU



Collaborative Studies on Genetics of Alcoholism

A large scale study to map alcohol dependence susceptible genes

Heping Zhang (C%S2, Yale University) MSU



COGA Data

@ The data include 143 families with a total of 1,614 individuals
@ Multiple Traits:
e ALDX1 (the severity of the alcohol dependence): pure unaffected,
never drunk, unaffected with some symptoms, and affected
e MaxDrink (maximum number of drinks in a 24 hour period): 0-9,
10-19, 20-29, and more than 30 drinks
e TimeDrink (spent so much time drinking, had little time for anything
else): “no”, “yes and lasted less than a month”, and “yes and lasted
for one month or longer”

@ Genotypes: markers on chromosome 7
@ Covariates: age at interview and gender

Heping Zhang (C%S2, Yale University) MSU
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@ Analysis of Comorbidity

@ Application to SAGE GWAS Data
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Study of Addiction: Genetics and Environment (SAGE)

@ The data were from SAGE (Bierut et al. 2010), a case-control
study of mostly unrelated individuals aimed at identifying genetic
associations for addiction.

@ We included 4,121 subjects for whom the addiction to the six
categories of substances and genomewide SNP data (ILLUMINA
Human 1M platform) were available.

@ We defined the outcome as to whether a subject was addicted to
substances in at least two of the six addiction categories (nicotine,
alcohol, marijuana, cocaine, opiates or others).
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Peak SNPs in PKNOX2 in White Women

SNP P-value Odds Ratio
rs1426153 (G) 1.84E-06 1.66
rs11220015(A) 1.97E-06 1.65
rs11602925(G) 1.24E-06 1.67
rs750338(C) 4.22E-07 1.63
rs12273605(T) 3.83E-06 1.71
rs10893365(C) 2.27E-07 1.72

(T)

(

rs10893366 6.87E-07 1.70
rs12284594(G) 7.13E-08 1.77
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Peak SNPs in PKNOX2 in White Women for Individual Substances

SNP Nicotine Alcohol Marijuana Cocaine Opiates
rs1426153 (G) 0.0159 5.75E-5 7E-4 3E-4 0.0113
rs11220015(A) 0.0163 6.86E-5  0.0010 3E-4 0.0037
rs11602925(G) 0.0136 4.24E-5 7E-4 3E-4 0.0059
rs750338(C) 0.0491 4.26E-5 0.0013 2E-4 0.0112
rs12273605(T)  0.0921 3E-4 3.53E-5 1E-4 0.0680
rs10893365(C) 0.0411 1.72E-5 8.58E-6 2.91E-5 0.0699
rs10893366(T) 0.0621 1.37E-5 8.80E-6 8.63E-5 0.0905
rs12284594(G) 0.0239 1.97E-6 8.54E-6 4.39E-5 0.0533
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@ PKNOX2 is a novel TALE homeodomain-encoding gene, located
at 11924 in humans

@ It functions as a nuclear transcription factor indicated by its
structure and sub-cellular localization

@ One of the cis-regulated genes for alcohol addiction in mice
(Mulligan et al. 2006)

@ Confirmed by multiple studies
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Conclusions: Method

@ Developed a nonparametric weighted test to adjust for covariates
that accommodates multiple traits

@ Provided its asymptotic distribution and analytical power
calculation

@ Refined the weighted test by proposing the idea of maximum
weighting over the grid points of parameters

@ Proposed an asymptotic approach to assess its significance
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Conclusions: Application

@ WTCCC bipolar disorder data: not only confirmed SNP rs420259
on Chromosome 16 reported by the WTCCC (2007), but also
identified two regions (rs9378249 on chr 6; rs12938916 on chr 17)
at the genome-wide significance level

@ The identified haplotype block is near the RPGRIP1L gene that
was reported to be associated with bipolar disorder (O’Donovan et
al., 2008; Riley et al., 2009)

@ COGA data: confirmed and strengthened the top signal; provided
evidences for the advantage of maximum weighted test over
non-weighted test

@ SAGE data: identified PKNOX2 for addiction, which has been
confirmed by other studies
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Other Ongoing/Future Work

@ Incorporating genetic prior information into a current study
@ Genetic association analysis for rare variants

@ Nonparametric test for gene-environment interactions

@ Genetic test for multiple trait covariance structure
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