

Methodology of Magnetic Resonance Spectroscopy: MRS

Graeme Mason, Ph.D.

Depts. of Psychiatry and Diagnostic Radiology Yale University, New Haven, CT

Welcome to New Haven

What is MRS?

What is Spectroscopic Imaging? What is Image Segmentation?

What is ¹³C MRS?

What is MRS?

What is Spectroscopic Imaging? What is Image Segmentation?

What is ¹³C MRS?

Methods: What is MRS?

Nuclear Magnetic Resonance Spectroscopy

Spin of nucleus is either 'up' or 'down'.

Methods: What is MRS?

Subject lies inside a large magnet to orient the spins.

Rotating Magnetic Dipole

In a large magnetic field (scanner magnet), the magnetic dipole precesses about the axis of the large field with a frequency $v = \gamma B_0/2\pi$.

Only nuclei with spin can be detected with MRS.

Some NMR-Visible Nuclei

 1 H – water, lipids, amino acids, many other metabolites $\gamma = 2.67 \times 10^{4}$ radians/sec/Gauss

 ^{13}C - amino acids, neurotransmitters, glucose, lipids, acetate $\gamma = 0.67 \ x \ 10^4$ radians/sec/Gauss

- ¹⁵N metabolism of ammonia, amino acids
- ¹⁹F pharmacokinetics of fluoxetine and fluvoxamine
- ²³Na effects of hypoxia, challenges to Na pumps
- ²H metabolism of fats
- ⁷Li pharmacokinetics of lithium

Transition from Quantum to Classical Mechanics

1.5 mM GABA, 13.5 cc voxel contains 2.4 x 10²² hydrogen nuclei for GABA detection

The large number of particles allows a meaningful analysis of the behavior of the whole group.

Boltzmann distribution: N₊/N₋ = $\exp(-\gamma hBo/2\pi kT)$

approximated as $N_{+}/N_{-} = 1 - \gamma h Bo/2\pi kT$

N₊ minus N- is the net magnetization:

Spin Orientation in a Head (Outside the Scanner)

What is MRS?

Subject lies inside a large magnet to orient the spins.

Radio Frequency Energy Applied

The net magnetization is altered by the application of energy at the proper frequency.

Longitudinal (T₁) Relaxation

The magnetization returns to its original orientation at a rate governed by the exponential constant T_1 .

Transverse (T₂) **Relaxation**

Phase coherence is lost as the spins dephase due to microscopic magnetic field inhomogeneity.

MRS Frequencies Distinguish Chemicals: Sources of Differences in NMR Frequencies

1. Nucleus and Magnetic Field Strength (MHz) Nucleus:

Example: ¹³C frequency $\approx 25\%$ ¹H frequency

Magnetic Field Strength: For ¹H, 42.6MHz x field strength (Tesla) Examples:

a. 1.5T = 63.9 MHz

b. 2.1T = 89.4 MHz (~public radio - Bridgeport)

c. 4 T = 170 MHz

Sources of Differences in NMR Frequencies

2. Molecular identity (Hz to thousands of Hz)

- Different molecules respond with slightly different frequencies.
- At 2.1T, glutamate responds at 89,633,931 Hz glutamine responds at 89,633,940 Hz
- 3. J-coupling: (Hz to hundreds of Hz) (used for GABA editing)

MRS of the human brain: chemicals separated by frequency

MRS: Significance

¹H MRS measurement of GABA, Bruker 2.1T MR scanner, 13-22 cc occipital voxel: J-editing difference method

•8 cc at 4T.

Spectra of cortical GABA obtained in one subject at one week and one month of sobriety. GABA was reduced at one month.

Effects of 1 Month of Sobriety on GABA

•Changes in GABA levels with sobriety depended on smoking (p = 0.03).

•GABA in non-smokers fell by 0.39 ± 0.18 mmol/kg (p = 0.004), but GABA in smokers did not (p = 0.75).

•GABA in non-smokers at time 1 differed from the non-smokers' GABA at time 2 (p = 0.03).

What is MRS?

What is Spectroscopic Imaging? What is Image Segmentation?

What is ¹³C MRS?

¹H MR Spectroscopic Imaging TE = 25 ms Metabolite Distribution and Quantification

What is MRS?

What is Spectroscopic Imaging? What is Image Segmentation?

What is ¹³C MRS?

Image Segmentation

Creating images to quantify GM, WM, and CSF

Image Segmentation

Volumes expressed as % of intracranial volume (ICV)

Meyerhoff, ICANA 2004

Correlations of Gray, White, and Total Tissue Volumes

in Alcoholism •Across timepoints, there was a significant correlation between white matter content in the voxel and the total solid tissue (p < 0.0005), but not between grey matter and solid tissue (p = 0.36).

•Significance: long-term improvements in occipital tissue composition are primarily from white matter.

Short-term sober subjects

Long-term sober subjects

Alcohol-Related Brain Atrophy

How Can Segmented Data Be Useful?

When pure tissue is not accessible, regression analysis can be used to estimate concentrations in pure tissue. Chu et al., *Magn Reson Med*, 2000

How Can Segmented Data Be Useful?

Bilateral

Unilateral

A disease state can be examined with MRSI and image segmentation. Statistically abnormal pixels can be highlighted. Chu et al., *Magn Reson Med*, 2000

How Can Segmented Data Be Useful?

% GM Line Fit Plot

When pure tissue is not accessible, regression analysis can be used to estimate T2 effects in pure tissue. Sammi et al., *Magn Reson Med*, 2000

What is MRS?

What is Spectroscopic Imaging? What is Image Segmentation?

What is ¹³C MRS?

¹³C MRS:

Rates of Metabolism and Neurotransmission, Clear Resolution of Glutamate and Glutamine

- ¹³C \rightarrow non-radioactive isotope of carbon.
- 1% natural abundance means low background.
- No isotope effect on metabolism.

• Natural labeled substrates in blood yield MRS-detectable products in glutamate, glutamine, and other compounds in the brain.

¹³C Isotopic Labeling

[4-¹³C]Glutamate

[4-¹³C]Glutamine

Time courses of labeling yield rates of metabolic pathways.

[1-¹³C]Glucose

A ¹³C NMR Spectrum of a Human Brain in Vivo

140 cc voxel, 45 min accumulation

Isotopic Flow

Yellow Dye

•Faster flow \rightarrow more rapid appearance of dye at each pool

•Precursor pools "trap" dye temporarily

¹³C Labeling of Neuronal Glutamate & Astroglial Gln by Glutamate/Glutamine Cycle

¹³C Labeling of Neuronal Glutamate & Astroglial Gln by Glutamate/Glutamine Cycle: V_X, V_{tca}, V_{cycle}

Determining a Relationship Between Glutamate Release and Glucose Oxidation

 $CMRgl(ox) = 0.13 + 0.96Vcycle, R^2 = 0.74$

~1:1 relationship between changes in glucose oxidation and glutamate-glutamine neurotransmitter cycling

¹³C MR Time Courses of Glu and Gln in Individual Patients and Controls

No difference in oxidative metabolism.

Glutamateglutamine cycling is reduced in depression.

¹³C MRS Application to Human Disease: Measurement of NAA *Synthesis* in Canavan Disease

Journal of Neurochemistry, 2001, 77, 347-350

RAPID COMMUNICATION

Direct determination of the *N*-acetyl-L-aspartate synthesis rate in the human brain by ¹³C MRS and [1-¹³C]glucose infusion

Angel Moreno,**† Brian D. Ross* and Stefan Blüml**†

*Huntington Medical Research Institutes, Pasadena, California USA †Rudi Schulte Research Institute, Santa Barbara, California, USA

Abstract

A non-invasive ¹³C magnetic resonance spectroscopy (MRS) technique is described for the determination of the *N*-acetyl-L-aspartate (NAA) synthesis rate. *V*₁₁₄₄ in the human brain *in vivo*. In controls, the mean *V*_{NAA} was 9.2 ± 3.9 nmol/min/g. In Canavan disease, where [NAA] is increased (p < 0.001) and [aspartate] is deceased (p < 0.001). *V*₁₁₄₄ was significantly reduced to 3.6 ± 0.1 nmol/min/g (p < 0.001). These rates are in close agreement with the activity of the biosynthetic enzyme measured *in vitro* in animals, and with the rate of urinary excretion of NAA in

consistent with the regulation of NAA synthesis by the activity of a single enzyme, L-aspartate-*N*-acetyltransferase, *in vivo*, and with its control in Canavan disease by limited substrate supply and/or product inhibition. The ¹³C MRS technique provides the means for further determination of abnormal rates of neuronal NAA synthesis among neurological disorders in which low cerebral [NAA] has been identified.

Keywords: ¹³C MRS, [1-¹³C]glucose infusion, Canavan disease, humans, *N*-acetyl-L-aspartate synthesis.

J. Neurochem. (2001) 77, 347-350.

Moreno et al., J Neurochem, 2001

¹³C MRS Application to Human Disease Grading of Hepatic Encephalopathy

Blüml et al., Magn Reson Med, 2001

What is MRS?

What is Spectroscopic Imaging? What is Image Segmentation?

What is ¹³C MRS?

Acknowledgements

Alcohol Studies John Krystal (CTNA director) Ismene Petrakis Louis Trevisan Elizabeth Ruff Vladimir Coric Ralitza Gueorguieva

<u>MRS</u>

Douglas Rothman (MRRC director) Kevin Behar (GABA expertise, director mouse imaging program) Robin de Graaf Michael Appel Nicola Sibson

Acknowledgements

NIAAA Dept. Veterans Affairs

NIAAA Center for the Translational Neuroscience Of Alcoholism

R01 AA 11321-01A2 I-P50 AA-12870-01 K02-AA13430-01

