
input

prediction

Convolutional 2D 3x3

ReLU

Dropout

Flatten

Fully Connected

Sigmoid

Average Pooling 2x2

Batch Normalization

Figure 1 : Outline of Convolutional Neural Net architecture.
ReLU and sigmoid layers (color coded) introduce nonlinearity [1], batch normalization layers 
normalize the output of preceding layers to assist optimization [2], dropout layers reduce 
overfitting [3], flatten layers change the dimensions of output [4], convolutional 2D layers 
perform a mathematical convolution with a 3x3 kernel [4], and fully connected layers are a 
linear combination of the outputs of the preceding layer [4]

Noise Accuracy False Negative False Positive
Overall 79.93 9.36 10.71
High Risk 81.88 10.62 7.50
Normal Risk 77.33 7.67 15.00

Base Accuracy False Negative False Positive
Overall 79.86 5.86 14.29
High Risk 77.50 7.00 15.50
Normal Risk 81.62 5.00 13.38
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Objectives:

Automated Artifact Detection for EEG Data Using a 
Convolutional Neural Network

• Electroencephalography (EEG) is a temporally precise and inexpensive tool for 
studying brain activity in autism spectrum disorder (ASD)

• However, a weakness of EEG is contamination by movement and muscle activity 
• It is necessary to identify and exclude artifactual muscle  activity, but there is 

little consensus on methodology for its automated detection 
• EEG is still checked for artifacts by hand, which is time intensive and error-prone
• In other domains, such as facial recognition and email spam detection, 

convolutional neural networks (CNNs) have been effective in automating 
classification tasks

• CNNs are complicated, layered, nonlinear, mathematical models with 
parameters that are roughly optimized to classify inputs

• CNNs show promise for automating artifactual data identification

1. Develop a CNN to classify contaminated EEG collected from infants at normal 
risk (NR) and high risk (HR) for ASD

2. Assess its performance against human experts
3. Assess its performance in classification between NR and HR infants to explore 

potential differences in artifact across groups

• Data were collected in 118 EEG sessions with NR and HR infants
• Sessions involved 100 trials of looking at point light displays of biological and 

scrambled motion and were recorded at 500 Hz using EGI Net Amps 300 and 
128-channel Hydrocel Geodesic Sensor Nets

• Data were split into event-related epochs and manually classified by a human 
expert as artifactual or normal

• Epochs were converted into simple 2D arrays of amplitude by time across 129 
EEG channels, yielding 5834 artifactual and 5388 clean examples

• Epochs were clamped to the range [-100, 100] µV, then rescaled to [-1, 1]
• 3 datasets were combined, with a randomized ordering of epochs and 

differences in data augmentation
• Data augmentation creates more training data using existing epochs by slightly 

modifying them in ways that do not impact their classification
• Data augmentation options were: none, zero padding of 2-13ms before or after 

the epoch, and adding a .2µV noise signal
• Datasets with augmentation had double the number of epochs (N=22,044) as 

the dataset with no augmentation (N=11,022)
• Each dataset was split into a validation set (N=1000), a test set (N=1400), and a 

training set 
• CNNs were built according to the design in Figure 1 using the python library 

Keras, and the Tensorflow backend
• For results, the network was trained from a randomized initialization until it had 

seen all training data 12 times
• The CNN was trained and tested using a GeForce GTX 1080 Ti graphics card
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Results:

Conclusions:
• Our results show that CNNs can classify EEG artifact at rates approaching human 

expert performance
• Our CNN was able to classify epochs in a fraction of the time that a human 

evaluator would require
• The development process was able to improve performance significantly, and 

more complex architectures may bring further benefits
• Ongoing analyses of classification performance between groups could allow us 

to detect differential patterns of artifact by risk status
• Automated detection paired with a human reviewer via a visual check system 

could dramatically increase the accuracy and speed of the human while 
preserving input from human judgement
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• After training, the predictions of the CNN for the novel test set of epochs 
(N=1400) were compared with the labels created by a human-expert 

• Modification of architectures (Figure 1) was able to increase accuracy from 75% 
(unoptimized models) to over 80% (final model: Figure 1)

• CNN changes included: 
• Adding preprocessing in the form of clipping epochs to a standard 

range of ±100µV, then normalizing them to a range of ±1
• Increasing the network architecture from 14 layers to the current 

design with 24 layers
• Clean epochs incorrectly labeled as artifactual were considered false positive 

epochs, while overlooked artifacts were considered false negative epochs 
• The performance of the network trained with the various datasets is 

summarized in Table 1
• Augmentation with noise did not produce substantial improvements, 

but showed higher accuracy for the HR group
• Augmentation by zero padding had the best results, achieving over 

85% accuracy overall
• Evaluating the test set of 1400 epochs as good or artifactual took 

roughly 1.5 seconds, excluding the time to load the data into memory
• Editing these data by hand take approximately 182 hours

Padding Accuracy False Negative False Positive
Overall 85.07 6.93 8.00
High Risk 84.25 1.50 14.25
Normal Risk 85.40 9.10 5.50

Table 1 : Comparison of the performance of the network when trained with the base dataset 
(no augmentation), noise augmented dataset, and the padding augmented dataset. Values 
reflect percentage of the 1400 epochs in the test set. Metrics looking only at subsets of the 
test data by group are also shown.
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