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Abstract. Obesity has risen to epidemic levels in the United States and
around the world. Global indices of obesity such as the body mass index
(BMI) have been known to be inaccurate predictors of risk of diabetes,
and it is commonly recognized that the distribution of fat in the body is
a key measure. In this work, we describe the early development of image
analysis methods to quantify regional body fat distribution in groups of
both male and female wildtype mice using magnetic resonance images. In
particular, we present a new formulation which extends the expectation-
maximization formalism commonly applied in brain segmentation to
multi-exponential data and applies it to the problem of regional whole
body fat quantification. Previous segmentation approaches for multispec-
tral data typically perform the classification on fitted parameters, such
as the density and the relaxation times. In contrast, our method directly
computes a likelihood term from the raw data and hence explicitly ac-
counts for errors in the fitting process, while still using the fitted param-
eters to model the variation in the appearance of each tissue class. Early
validation results, using magnetic resonance spectroscopic imaging as a
gold standard, are encouraging. We also present results demonstrating
differences in fat distribution between male and female mice.

1 Introduction

Obesity is rapidly becoming an epidemic in the United States and around the
world. This was particularly highlighted in a series of recent NIH workshops
[5]. The relation of obesity to insulin resistance and impaired glucose tolerance
leading to type 2 diabetes is well established [22, 7]. Body fat distribution in
humans has also been linked to ischemic heart disease [13, 15] and cancer [2].
Further, it has been known for decades that global indices of obesity, such as
the body mass index (B.M.I.), are often not an accurate predictor of the risk of
diabetes and heart disease. For example, the amount of visceral abdominal fat
(i.e. fat inside the abdominal cavity) seems to correlate more highly with risk
for diabetes. As stated in lay language in a recent New York Times article [9],
“People who are shaped like apples, carrying excess weight in the abdomen, are
more likely to have diabetes and heart disease than are those built like pears,
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who deposit fat in their hips, thighs and backsides.” This was even further
emphasized by a recent study by Klein et al [11] that demonstrated an absence
of effect of liposuction on insulin resistance. This was attributed to the fact
that liposuction primarily removes subcutaneous fat (i.e. fat just under the skin
and outside the abdominal cavity), whose presence appears less correlated with
insulin resistance.

Transgenic mouse models of obesity offer the unique ability to study the
effect of factors such as age, gender, diet and therapeutic agents on disease pro-
gression, in statistically significant numbers of subjects in a tightly controlled
environment. There are currently, however, no effective automated methods for
the non-invasive measurement of fat distribution in rodents. While such measure-
ments can be made invasively (via dissection [21]), non-invasive techniques will
enable longitudinal studies of the same group of animals, and the development
of automated image analysis techniques will facilitate large scale studies.

Multi-echo magnetic resonance imaging offers a unique non-invasive tech-
nique for quantifying soft tissue structural differences between wildtype mice
and transgenic mouse models of obesity and for regional quantification of fat
in a whole body image. The parameters that can be estimated from such im-
ages, namely the T1-weighted proton density and the relaxation rate r2, offer
jointly a high contrast marker for the detection of fat as well as optimal soft
tissue contrast for image registration. Accurate image registration is necessary
for bringing information from different mice into a common space for the pur-
pose of statistically comparing fat distributions and morphometric differences in
different groups.

In this paper, we present preliminary work aimed at the effective quantifica-
tion of such images. In particular, we present a method for image classification
for the purpose of determining tissue composition in terms of fat, lean mus-
cle (non-fatty soft tissue) and bone/air. The main mathematical contribution
of this work is the development of a probabilistic model for the modeling of
multi-exponential data in the presence of noise for optimal tissue classification.

Our work is related to previous work in voxel based image classification and
segmentation which has been extensively studied in the literature. Many of the
methods in this area rely on the formalism of Markov random fields as originally
presented by Geman and Geman [8]. The major application of such techniques
in medical imaging has been in the voxel-based classification of brain images
into gray matter, white matter and cerebro-spinal fluid. Our work is close in
spirit to the approach of Wells et al. and others [24, 25], where an Expectation-
Maximization strategy is used to simultaneously estimate tissue classes (gray,
white, CSF) while simultaneously estimating additional parameters (in this case
the bias field) which aid in the classification. Cline et al. [4] use multispectral
voxel classification in conjunction with connectivity to segment the brain into
tissue types. Material mixture models [12] have also been used. There has also
been additional work explicitly aiming at fuzzy classification where each voxel,
instead of being classified as exclusively belonging to a specific class, is given
partial memberships into multiple classes e.g. [14, 19, 17]. Our proposed whole
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body classification is particularly close to the work of Pham et al [17] which aims
to fuzzily classify multi-spectral acquisitions using a fuzzy c-means method, and
exponential fits to estimate tissue properties.

Simple thresholding techniques have been used by many investigators in more
clinically focused studies to determine fat volumes (e.g. the work of Weiss et al
[23].) Threshold selection, however, is often performed in an arbitrary manner
and the measurements produced using such methods are highly sensitive to the
exact threshold settings. There has been some work in automated fat quantifi-
cation from MRI (e.g. [3, 10]) which either utilize simplified thresholding based
algorithms, and/or very specific acquisition methods, which are not suitable for
whole body fat quantification.

The rest of this paper reads as follows. In, Section 2, we provide details for
both the conventional imaging and spectroscopic imaging (CSI) methods used
to obtain both the images and the CSI data used as a gold standard. Next,
in Section 3, we describe the mathematical formulation of our classification
method. Validation results are presented in Section 4, and results illustrating
differences in fat distribution between groups of male and female mice are pre-
sented in Section 5. Conclusions and plans for future work are discussed in
Section 6.

2 Imaging and Spectroscopy Methods

Our imaging/spectroscopy methods were developed on a Bruker 4T small-animal
imager with an inner diameter of 16 cm. Three-dimensional images were acquired
with a resolution of approximately 0.15×0.20×0.15mm, and an imaging matrix
of 128 × 512 × 128, using a 3D multi-echo multi-spin (MSME) sequence with 6
echos TE = 15, 30, 45, 60, 75, 90ms and TR = 300ms. This yielded six images of
different contrast which in turn enable the fitting of a mono-exponential model to
each voxel for the purpose of computing tissue parameters such as the relaxation
rate r2 and the T1-weighted density d. Because the dimensions of our current
imaging coil were not long enough to image the full length of some male mice, in
these cases mice were imaged twice with repositioning between the acquisitions
and the resulting images were joined together to form the whole body image.
Example images, as well as fitted mono-exponential parameters d and r2, are
shown in Figure 1.

Chemical shift spectroscopic imaging (CSI) acquisition was used as a gold

standard data of tissue composition for a small portion of the mouse. The CSI
data were acquired with a resolution of 0.4×0.4×1mm3, dimensions 64×64×12,
and a spectral width of 4006Hz resulting in good water and fat separation. Fat
was quantified by integrating the resulting spectra for each voxel around the fat
peak, as was done in the images shown in Figure 2 (on page 375). Although the
acquisition time required for CSI is prohibitively long for routine work (more
than two hours for a small section of the mouse), these data provide a gold
standard for the validation of faster acquisitions (such as our multi-echo data)
combined with more rigorous image analysis techniques.
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Fig. 1. Example images from multi-echo acquisitions. Leftmost four columns: Four
different contrasts obtained using a multi-echo sequence. Rightmost two columns: Ex-
ponential fit of T1-weighted density and relaxation rate r2

3 Tissue Classification

In this section, we describe our methodology for tissue classification from MRI.
Our method for classification extends the EM-like classification methods of Wells
et al and Zhang et al [24, 25], to properly apply to the vector-valued imaged data
that are available to us.

Image Model: We acquire a number Ne = 6 of images at multiple echo times
Te = [15, 30, 45, 60, 75, 90] ms, and we model the image intensity at image loca-
tion x for a given Te using a mono-exponential model:

I(x, Te) = d(x)e−Ter2(x) + ef (x) (1)

where Te is the echo-time for the acquisition, d(x) and r2(x) are the T1-weighted
proton density and the relaxation rate at location x (r2 = 1/t2, where t2 is the
relaxation time), and ef is the noise term, which we assume to be normally
distributed.

For the purpose of the classification, we assume that any given voxel belongs
to one of three classes c = [ 1=bone/air, 2=lean muscle, 3=fat ], and that the
density d and relaxation rate r2 for each class can be described as independent
normally distributed random variables with means md,mr2 and standard devia-
tions sd, sr2. We group the parameters for each class i ∈ [1, 2, 3] into a parameter
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vector θi = [mi
d,m

i
r2, s

i
d, s

i
r2], and further concatenate the three parameter vec-

tors θi into a global parameter vector Θ. In addition, we define the labeling
function M(x) which determines the class value for each voxel. M(x) can take
values [1, 2, 3]. At each image location x (we will drop the explicit dependence on
x from here on), we estimate the optimal values of d and r2. This is accomplished
by minimizing a standard least squares merit function of the form:

χ2 =

Ne∑

j=1

(

I(x, Te(j)) − de−Te(j)r2

)2

σ2
n

=

Ne∑

j=1

ef (j)2

σ2
n

(2)

We label the optimal estimates at location x as d̂ and r̂2, and σn is an estimate of
the image noise at this location. We model the fitting errors ef (i) as independent
and normally distributed with zero mean. The quality of the fit can be modeled
using the Student’s t distribution with Ne−2 degrees of freedom [17]. Hence, we
can compute at each voxel a probability of fit q(x)[18], given the optimal residual
error χ2. Further, we can estimate the variance of the fitting error ef , s2

e which
will be useful in the classification process. In summary, the application of this
procedure at each voxel results in the computation of optimal tissue parameters
(d̂, r̂2), the likelihood that the model is applicable q, and the variance of the
fitting error s2

e.

Classification Algorithm: The goal of our classification strategy can then be
expressed as estimating the optimal segmentation M and parameter vector Θ
given the input image vector I. We express this mathematically as:

M̂, Θ̂ =
arg max

M,Θ
p(M,Θ|I) (3)

As is commonly done, this can be solved iteratively (where k labels the iteration)
in the same spirit as the EM-framework as:

E-Step: Θk =
arg max

Θ
p(Θ|I,Mk−1), M-Step: Mk =

arg max

M
p(M |I, Θk)

(4)

where at iteration k, in the E-Step we estimate a new set of parameters Θk

given the current classification Mk−1 and then, in the M-Step, using the newly
estimated Θk we estimate a new classification Mk.

E-Step: This is straightforward. For each class i we estimate the mean and
standard deviation of d and r2 by a weighted sum of the d̂ and r̂2 of all the voxels
where M = i, using the quality of fit terms q as the weights. This ensures that
parameter estimates from better fits are weighted more heavily in the estimation
process [17].

M-Step: This takes the form of a Bayesian a-posterior maximization. First we
express

M̂ =
arg max

M
log p(M |I, Θk) = k1 + log p(I, Θk|M) + logp(M) (5)
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where k1 is a constant. This equation is easily maximized by a greedy search
strategy as M can only take values of 1, 2, 3. The prior term on the classifica-
tion, p(M), can be defined by modeling M as a Markov random field resulting
in a Gibbs distribution for M of the form: P (M) = e−kmU(M(x)) [25], which
ensures local smoothness of the classification (km is a normalization constant.)
We express the likelihood (or data-adherence) term for each possible value of
M = i as:

p(I, Θk|M = i) = p(I|Θk,M = i)P (Θk|M = i) ∝ ΠNe

j=1p(I(T j
e )|θi) (6)

The term p(I(T j
e )|θi) can be derived using the imaging model (Equation 1). First

we linearize this using a Taylor series expression as:

I(T j
e ) ≈ mi

de
−T j

e mi
r2 + (d − mi

d)e
−T j

e mi
r2 + (r2 − mi

r2)T
j
e mi

de
−T j

e mi
r2 + ef (7)

By assuming that d, r2 and ef are normally distributed random variables, we can
conclude that the conditional density p(I(T j

e )|θi) is also a normal distribution,
as I(T j

e ) is effectively a weighted sum of three normal random variables. Further
we can derive the mean and standard deviation of this distribution as:

Mean(p(I(T j
e )|θi)) = µ(M,T j

e ) = mi
de

−T j
e mi

r2 ,M = i (8)

Variance(p(I(T j
e )|θi)) = σ2(M,T j

e ) = (T j
e mi

r2)
2(s2

d + (mi
d)

2T 2
e s2

r2),M = i (9)

Based on this derivation, we can express Equation 5 in its final form as:

M̂ =
arg min

M

Ne∑

j=1

(
I(T j

e ) − µ(M,T j
e )

)2

2σ(M,T j
e )2

− logσ(M,T j
e )

︸ ︷︷ ︸

Vector Data Adherence Term

− kmU(M)
︸ ︷︷ ︸

Smoothness

(10)

This formulation is superior to the more standard approach where the clas-
sification is performed directly on fitted tissue parameters (e.g. in this case the
T1-weighted density d and the relaxation rate r2) because it takes into account
directly the fact that such parameter fitting is an approximation to the real data.
In cases where the local parameter fit is inaccurate (i.e. the residual error in the
fitting of d and r2, which is not uncommon in motion-corrupted data) a standard
classification based on these estimates can yield erroneous results, whereas by
performing the classification using the original image data such errors can be
avoided. Consider, for example, the case where a mono-exponential model badly
approximates the data at a given voxel. If the fitted parameters are used, the
data adherence term will push for the voxel to be classified in one of the given
classes regardless. In our method, the values for the (vector) data adherence term
will be high for all classes, hence allowing the local classification to be driven by
the smoothness term as is appropriate in cases of uncertain data.

Initialization: The algorithm is initialized using a k-means clustering procedure
[6, 17], which initially forms clusters based on the fitted density measurements

d̂. Then, using the output as a starting point, the algorithm performs a joint
clustering on the pair [d̂, r̂2].
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4 Validation of Segmentation Using CSI

We performed preliminary validation of the MRI-based fat quantification algo-
rithm by comparing its output to a direct measure of fat using chemical shift
spectroscopic imaging (CSI). While CSI provides high quality measurements, the
imaging time is prohibitive for in-vivo whole body imaging. We acquired both
whole body MR images and also CSI data covering a small portion of the ab-
domen (typically 2.5x2.5x2 cm3) of 12 wildtype C57BL6 mice (6 male, 6 female,
average age 11 weeks), using the methods described in Section 2.

CSI Processing. The CSI data were first corrected to align the water peaks in
the spectra of the individual voxels (as shown in Figure 2 (top right)). Next we

Fig. 2. Preliminary validation of the MRI-based fat measurements using spectroscopic
(CSI) imaging. (Top Left) Section of the MRI image for which CSI data was acquired.
(Top Right) Integrated MRS Spectrum from all CSI voxels illustrating the effect of
correcting for local field inhomogeneities by shifting the individual CSI-voxel water
peaks to the center of the spectrum. Note that both the water and the fat peaks
become higher and narrower as a result of the correction. (Bottom Left) Spectroscopic-
“water” image showing contrast that is similar to that obtained using MRI – without
the fat . (Bottom Middle) Spectroscopic “% fat” image (Bottom Right) Fat probability
map generated by the classification algorithm and MRI, at the same resolution as the
CSI data. The correlation between the two fat maps was 0.78. When the small signal
dropout region near the mouse’s back is excluded the correlation rises to 0.82
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Table 1. Quantitative validation of the MRI-based fat measurements with CSI. The
total amount of fat in the imaged region from CSI (CSIFAT) is compared with MRI
derived measurements (MRIFAT) as estimated by our algorithm (using three different
smoothness parameters 0.1,0.5,1.0). The voxelwise correlation between the CSI per-
centage fat map and the algorithm output is given in the rightmost three columns.
(The mouse identifier begins with ‘F’ for female mice and ‘M’ for male mice.)

computed a water signal and a fat signal for each voxel by integrating over the
appropriate portions of the spectrum around the water and fat peaks respec-
tively. A water image is shown in Figure 2 (bottom left), and a percentage fat
image is shown in Figure 2 (bottom middle).

MRI-based Fat Quantification. Our algorithm was used to quantify fat in the
MRI data and a corresponding MRI percentage fat image was computed, by
first rigidly registering the MRI image to the MRS ‘water image’ using the
method by Studholme et al. based on normalized mutual information[20] (top
left, and bottom left of Figure 2 respectively) and computing the percentage
of MRI voxels in the space occupied by a single CSI voxel labeled as fat by
the algorithm. The results are tabulated in Table 1, and the overall trend is
encouraging. The overall correlation (obtained by concatenating the fat maps
from all the mice and computing a single correlation) was approximately 0.75
and the algorithm’s total fat estimate was approximately 80% of the CSI total
fat estimate. Further the output of the algorithm was fairly insensitive to the
setting of the smoothness parameter as shown in the table.

For the male mice, the CSI slices were acquired in the kidney region where fat
content is generally higher, whereas for the female mice CSI slices were through
the liver where the fat is more dispersed inside the organ. The lower correlations
for the female mice were expected. The error for the male mice is less as the
fat around the kidney is easier to quantify from MRI (and see visually). This
may be due to our hard classification strategy which does not allow for partial
voxel labeling. Also, in general our approach under-estimated the total amount
of fat possibly due to the inability of the mono-exponential model to accurately
quantify fat dispersed in tissue.
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5 Quantification of Group Differences

5.1 Fat Quantification in Male and Female Mice via ROI Analysis

To illustrate the potential applications of our methodology in the evaluation
of groups of mice, we performed regional fat quantification for two groups of
mice, a group of N = 5 male mice and a group of N = 5 female mice. The two
groups were approximately age matched (average age 10.6 vs 10 weeks). They
are a subset of the mice used for evaluation of our tissue classification algorithm
presented in Section 4, in particular two mice were omitted from the original
N = 12 mice of Table 1 for the purpose of this analysis to make the groups
approximately age matched.

Our tissue classification strategy described in Section 3 was used to classify
the images. Using this classification, we computed the following measures which
are tabulated in Table 2: (a) Total mouse volume, (b) Total body fat volume,
(c) Abdominal fat volume – this was defined as the total volume of fat inside the
abdomen. A region of interest (ROI) inside the abdomen was defined by the semi-
automatically extracted abdominal surfaces in each mouse. (d) Subcutaneous
Fat Volume – defined as the total amount of fat outside the abdomen, (e) %
abdominal fat, defined as the ratio of abdominal fat to total fat and (f) % body
fat, defined as the ratio of total fat volume to total mouse volume.

The results tabulated in Table 2, demonstrate that in these two (admittedly
small) groups, male mice tend to be bigger and have proportionally more fat than
female mice, Further, we illustrate our ability to quantify regional fat measures
such as abdominal fat, as opposed to simply whole body fat. We additionally note
that the computed % body fat numbers are in the same range as those reported
in the literature[1] using a whole body MR-spectrometer on similar mice.

Table 2. Quantification of key parameters using our tissue classification algorithm
(Top: M = Males N = 5. Bottom: F = Females N = 5). Mice were approximately
age-matched (10.6 vs 10 weeks old)
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Fig. 3. Left: Average anatomical image (left) and fat distribution image (right) from
N = 5 male mice, computed using non-rigid registration. The fat distribution is overlaid
on the average anatomical image (right) where the color scale is such that voxels shown
in red were classified as fat in at least half the mice, with progressively brighter shades
of yellow indicating that those areas were classified as fat in more mice. Middle &

Right: Fat distributions of N = 5 male (middle) and N = 5 female (right) projected
onto the outer skin surface of the reference male and female mice respectively. At each
point in the surface we plot the average value of the fat distribution on a line segment
of length 7 mm parallel to the local surface normal

5.2 Fat Distributions in Male and Female Mice

Fig. 4. Example of a point-set used for registration – from
a female mouse. Red: outer skin surface, orange: abdominal
surface, green and yellow: right and left kidney surfaces re-
spectively

For the same N =
5 male and N = 5
female mice used in
the previous section
we computed fat dis-
tribution maps by (a)
registering the indi-
vidual male and fe-
male mice into a
common space using
our integrated regis-
tration method [16] –
that used both image
intensities and points sampled from pre-segmented surfaces (an example is shown
in Figure 4), and (b) averaging the warped individual fat maps to generate av-
erage fat distribution maps for each group. The fat distribution maps are shown
in Figure 3. Visually it is again obvious that in this case the male mice had
substantially more fat, especially in the area around the reproductive organs
(between the rear two legs). Such fat distributions generated by the registration
of individual mouse tissue classification maps to a common space afford a direct
look of what the typical fat distribution is in a group of mice.
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6 Conclusions and Future Work

With the segmentation and quantification method described in this paper it
has been possible to estimate regional body fat which overcomes a number of
inadequacies in previous studies. The current method achieves an accurate quan-
tification of subcutaneous fat pads, however the accuracy of the method to detect
intra-organ fat (e.g. in the liver) which is dispersed in normal tissue is limited
by its reliance on binary classification and mono-exponential tissue modeling.
To address these limitations, it should be possible to use a larger number of
non-uniformly spaced echos to enable the robust estimation of multi-exponential
tissue models, which in turn will enable the use of fuzzy classification techniques.
Additional ongoing work aims to optimize whole body mouse non-rigid registra-
tion to address the issue of forming composite fat maps and eliminating the need
for the manual ROI analysis, which was used in the results presented in Section
5.1. The classification methods presented in this paper are also applicable in both
human and rodent neuroimaging in cases where multi-echo data is available.
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